
0 WflES L!vA1 Am

t," " by

PAlm CA Km ' JAN21 1

tm tiiiversity of ifaii, Honolulu IJJLL, u 3~W
~B

NATIONAL TECHNICAL
INFOr .ATION SERVICE

fle, V. 22151 Teduchnc RP orvt B70-3

1.~. 1. ," , 'rpubl "- No be 1970
$ AOArelease ai: ' n 15 anllratt.,

UNIVERSITY OF HAWAII Prepaed under Grant Number F44620-69-C-0030 from the Air Force
HONOLULU, HAWAII 96822 Office of Scientific Research (Oi-R); a Project THEMIS Award,

m i i i t

UHTSS LIBRARY MANAGEMENT
YESTERDAY. TODAY, AND TOMORROW

BY

ALAN C.H. KAM
UNIVERSITY OF HAWAII, HONOLULU

THIS REPORT IS A COLLECTION OF INTERNAL
REPORTS DEALING WITH THE LIBRARY MANAGEMENT. THE
PRELIMINARY DESIGN DETAILS THE ANTICIPATED SYSTEM.
THE STRUCTURE OF DATA BASE REVEALS THE
IMPLEMENTATION SCHEME ON AN IBM 2314 DISK FACILITY.
VARIOUS ALGORITHMS ARE PRESENTED TO DOCUMENT THE
ACTUAL SYSTEM CONDITIONED BY USING XPL AND OS
1MVT/HASP. FINALLY A DETAILED DESCRIPTION OF THE XPL
PROGRAM ELABORATES UPON THE MODULAR APPROACH.

THIS WORK IS A JOINT PROJECT OF THE UNIVERSITY OF
HAWAII COMPUTING CENTER AND THE ALOHA SYSTEM, A RESEARCH
PROJECT RESEARCI; (SRMAI UNDER CONTRACT NUMBER F44620-69-C-
0030, OF THE UNIVERSITY OF HAWAII# SUPPORTED BY THE OFFICE
OF AEROSPACE A PROJECT THEMIS AWARD.

2

ABSTRACT

THE UHTSS USER'S LIBRARY IS A COLLECTION OF USER'S DATA
SETS WHOSE FORMAT IS EITHER SOURCE 80 BYTE CARD IMAGE
RECOKDS) OR LOADABLE (3000 BYTE CORE IMAGE RECORDS). EACH
USER'S DATA SET IS AN INOEXED LIST OF LOGICAL TRACKS (3520
BYTES = 1/2 PHYSICAL TRACK). THE LIBRARY PROVIDES SIMPLE
EDITING FUNCTIONS FOR SOURCE DATA SETS, ROUTES SOURCE DATA
SETS TO EXTERNAL DEVICES, AND MANAGES THE DATA SETS. THIS
PROGRAM IS WRITTEN IN XPL UJSING THE DIRECT ACCESS FEATURES.
THE LIST PROCESSING ASPECTS OF ISS-i LL Y ARE USER WRITTEN
SINCE THE XPL FACILITIES ARE INADEQUATE* IN PARTICULAR,
ARRAY MANIPULATION AND STRING MOVE FUNCTIONS ARE CODED AS
XPL PROCEDURES.

THE MANAGEMENT OF THE LIBRARY CONSISTS OF "CREATING"
DATA SETS, "SCRATCHING" DATA SETS, "SELECTING" DATA SETS,
AND "NAMING" CATA SETS.

ONCE A DATA SET HAS BEEN CREATED/SELECTED. ONE MAY
ENTER SOURCE CARDS ONTO HIS DATA SET. TWO EDITI| FUNCTIONS
PROVIDE A SIMPLE METHOD TO ACCOMPLISH THE UPDATING. A SOURCE
CARD IS A 72 BYTE IMAGE WITH A 6 BYTE KEY. THE KEY SEQUENCES
THE POSITION OF THE CARD WITHIN THE-DATA SET. "INSERT* ADDS
A CARD TO OR REPLACES A CARD IN THE DATA SET, WHILE "DELETE"
REMOVES A CARD FROM THE DATA SET. BOTH CREATION AND
INSERTION UTILIZE THE TRACK ALLOCATOR, WHILE SCRATCHING AND
DELETION USE THE TRACK FREERo THE TRACK MANAGEMENT ROUTINES
CHECK POINT THE IN-CORE TABLE ONTO THE DISK FILE EACH TIME
THE TABLE ENTRIES ARE ALTERED.

NOW IF THE USER HAS FINALLY DEBUGGED HIS PROGRAM AND
WANTS TO REVIEW IT, TSS-LIBRARY PROVIDES THIS FUNCTION. IN
GENERAL, SOURCE DATA SETS CAN BE ROUTED TO THE BATCH
PROCESSOR AND TO 3 EXTERNAL DEVICES - PRINTER, PUNCH, AND
HIS TERMINAL. USING THE ROUTING ROUTINES, THE USER CAN
OBTAIN A PERMANENT HARD COPY OF HIS PROGRAMS. THE RESPECTIVE
COMMANDS ARE $HASP', 8PRINT'e 'PUNCH', AND 'DISPLAY'.

FINALLY THE USER MAY USE INTERNAL COMMANDS WHICH
MANIPULATE THE CONTENTS LOGICAL TRACKS. HE CAN SELECT DATA
SETS USING "LINK", READ A LOGICAL TRACK RECORD BY USING
OLOAD", AND WRITE A LOGICAL TRACK RECORD BY USING "DAOLN.

3

fxtILENT5

INIRODUCTION
SYSTEM OVERVIEW
DATA BASE OVERVIEW
BACKGROUND HISTORY

COMMAND STRUCTURE
DATA SET MANAGEMFNT COMMANDS
DISPLAY COMMANDS
EDITING COMMANDS
INTERNAL COMMANDS
DATA SET ASSIGNMENT

PRELIMINARY DESIGN
STRUCTURE OF THE ENTIRE LIBRARY
DIRECTORY SCHEME
LOADLIB AND USERLIB
SYSTEM UPDATE SCHEME
MANAGEMENT TECHNIQUES
APPENDIX

DATA BASE STRUCTURE
STRUCTURE OF OSIMVT IMPLEMENTATION
STRUCTURE OF UHTSS USERLIB
STRUCTURE OF DIRECTORY TABLE OF CONTENTS
STRUCTURE OF DIRECTORY PAGE
STRUCTURE OF UHTSS DATA SET
APPENDIX

LIBRARY MANAGEMENT ALGORITHMS
TRACK MANAGEMENT
DATA SET MANAGEMENT
JOB MANAGEMENT

XPL IMPLEMENTATION
SOURCE LAYOUTS
SUBROUTINE COMPONENTS
SUBROUTINE ANATOMY

FILE MAiNTENANCE ROUTINES
ZERODISA
STATDISK
hNLZOISK

4

,$JIEM.OERVIEW

WITH THE INkTALLATION OF THE MVT OPERATING SYSTEM ON
THE UH IBM 360/65v THE TIMESHARING SYSTEM DEVELOPED HERE FOR
USE WITH THE MODEL 50 BECAME OBSOLETE. A NEW SYSTEM, UHTSS,
IS NOW UNDER DEVELOPMENT AS A JOIN(PROJECT OF THE COMPUTING
CENTER AND THE ALOHA SYSTEM. UHTSS CURRENTLY UTILIZES IBM
2260'Si AND SHOULD BE EAS!LY ADAPTABLE TO ANY KIND OF
TERMINAL WE ACQUIRE*

UHTSS HAS A CONSOLE USERIS DATA FILE ST'UCTURED TO
FACILITATE EDITING FROM THE CONSOLE. DATA SET4 OF CARD
IMAGES CAN BE CREATEDt EXAMINED AND EDITED FROM THE CONSOLE
AND PRINTED, PUNCHED9 OR READ BY A CONSOLE OR BACKGROUND
PROGRAM. CONSOLE USERIS DATA SETS CAN ONLY BE ACCESSED BY

UHTSS UTILITY ROUTINES, BECAUSE THEY 00 NOT USE A STANDARD
IBM ACCESS METHOD. THE SYSTEM WILL ALSO BE ABLE TO USE
STANDARD IBM CS DATA SETS, BUT THE FLLL FACILITY FOR THIS
WILL REQUIRE CONSIDERABLE TIME TO DEVELOP.

PROGRAMS CAN BE EXECUTED IN THREE MODES. FIRST, THE
VERY HEAVILY USED ROUTINES FOR DISPLAYING AND EDITING
CONSOLE USERS' DATA SETS WILL BE IN THE MEMORY ALL THE TIME.
SECONDLY@ A PART OF THE MEMORY WILL BE AVAILABLE TO SHARE
AMONG CONSOLE USERS BY *SWAPPING" TO THE DISK UNIT. THIS
WILL BE USED FOR VERY SHORT PROGRAMS AND INTERACTIVE
PROGRAMS. THIRDLY, A PERSON WILL BE ABLE TO PREPARE A
PROGRAM IN MUCH THE SAME AANNER AS FOR UROINARY BATCH
OPERATION AND SUBMIT IT TO THE BATCH OPERATION SY COMMANDS
FROM THE CONSCLE.

OUR OLD TIME-SHARING SYSTEM USED STANDARD BATCH
COMPILERS. IT IS MI OUR INTENTION TO INCLUDE THIS FACILITY
WITH THE NEW SYSTEM, BUT TO PROVIDE COMPILERS OR
INTERPRETERS ADAPTED PRIMARILY TO TIME-SHARING SYSTEMS. THE
BATCH COMPILERS ARE MOST GENEr L BUT ARE AWKWARD ..,oD SLOW
FOR USE WITH THE 2260. FUTHERMOREt THEIR USE WITH A
TYPEWRITER CONSOLE WILL BE MUCH MORE DIFFICULT. CURRENTLY, A
BASIC COMPILER AND A DESK CALCULATOR tACILITY ARE AVAILABLE.

5

DATA BASE OERVIEW

THE PRELIMINARY DESIGN OF THE LIBRARY MANAGEMENT WAS
BASED ON A GRANDIOSE VIEW OF AN INFOkMATiCN RETRIEVAL
SYSTEM. IT WAS CONDITIONED BY IBM'S DATA MANAGEMENT SYSTEMS
AND IN PARTICULAR PARTITIONED DATA SETS. AFTER INVESTIGATING
THE PUS SCHEME, THE FOLLOWING CONCLUSION WAS DRAWN: IT WON'T
WORK. THE MAIN REASON FOR THIS STATEMENT WAS THAT THE PDS
SCHEME LACKED DYNAMIC GARBAGE COLLECTION (WHICH IBM CALLS
DEGASSING). THUS THIS FIRST EFFORT IN SPECIFYING WHAT WAS
CESIRD ".FLECTLO CNLY ASPIRATIONS ON THE GROSSEST 4CALE.
YET, ITS LOGIC HAS PREVAILED WITHIN THE UH(SS L&SRARY
SCHEME.

THE COMMAND STRUCTURE REFLECTED A MODEST ASPECT OF THE
PRELIMINARY DESIGN. THE COMMANDS PROVIDED SIMPLE FUNCTIONS,
MAINLY THOSE REQUIRED TO MANIPULATE CARD IMAGED DATA SETS.
THE LIBRARY SCHEME WAS STRUCTURED TO THIS END.

THE DATA BASE STRUCTURE WAS A STRAIGHTFORWARD SCHEME
DESIGNED TO MINIMIZE DISK ACCESSES. THE RETRIEVAL SCHEME WAS
PREDICATED UPON THE EXISTANCE OF SEARCH KEYS. [N CRDER TO
ACCESS A SINGLE CARD THE FOLLOWING KEYS WERE AT ONE TIME
USED: THE JOB/ACCOUNT NUMBER KEY, THE DATA SET NAME KEY, AND
THE CARD KEY. THIS LIBRARY PLAN DIFFERED FROM MANY TIME-
SHARING SYSTEPS BY NOT COPYING THE USER'S FILE ONTO A WORK
FILE, EDITING THAT FILE AND LATER RECOPYING THE EDITED ONE
ONTO THE ORIGAALo BUT BY PERFORMING ALL EDITING IN-PLACE.

WITH THIS DATA BASE, SEVERAL ALGORITHMS WERE DELEVLOPED
TO MANAGE THE FILE, HALF OF THEM WERE QUITE NATURAL AND WERE
DESIGNED BEFORE THE IMPLEMENTATION. THE OTHER HALF WERE BORN
OUT OF NECESSITY.

THE XPL IMPLEMENTATION USED A HORRENDOUS COLLECTION OF
SUBROUTINES. THE BASIC CONCEPT PREVALENT THROUGHOUT THE
PROGRAM WAS THAT OF BLOCKS. BLOCKS WERE CREATED, MOVED ABOUT
AND DELETED. THE VISUAL 4PPEARANCE OF THE PROGRAM WAS
DESIGNED TO PROVIDE A PICTURE OF THE INTERNAL RELATIONSHIPS.
SINCE THE FLOW OF CONTROL IS LINEAR, SOME EFFORT WAS
EXPENDED TO LINEARIZE THE ALGORITHMS. NOTE THAT BOTH ERROR
AND NORMAL EXITS WERE LOCALIZED.

THE LAST SEGMENT OF THE DATA BASE OVERVIEW IS THE FILE
MAINTENANCE ROUTINES. TWO OF THESE PROGRAMS USE THE DISK AS
A DIRECT ACCESS FILE# NOT A UHTSS LIBRARY FILE. [HE OTHER
PROGRAM* ANLZDISK# IS STILL IN ITS INFANCY. MUCH WORK IS
REQUIRED IN THE AREA OF DISK SPACE ACCOUNTING, DEAD STORAGE
MANAGEMENT, AND DATA SET REORGANIZATION.

6

BACKGROUND HiI STORY

THE BASIC REASON FOR CHOOSING THE XPL SYSTEM WAS THAT
IT WAS A SYTEM THAT WE COULD UNDERSTAND. ALTER AND RE-
DESIGN. WE DID NOT WANT TO PATCH EXISTING COMPLIER SYSTEMS.

ALTt;OUGH FORTRAN H WOULD HAVE GIVEN US THE MOST
EFFICIENT CODE, ITS STRING PROCESSING CAPABILITIES WERE NON-
EXISTANT. STRING MANIPULATION IS NOT A REQUISITE BUT ADDS TO
THE STRUCTURAL RELATIONSHIPS OF THE ROUTINES. PL/I WITH ITS
LIST PROCESSING WOULD HAVE BEEN PERFECT, HOWEVER, THE
OVERHEAD IN lIhKAGEv ET CETERA* WOULD HAVE BEEN A
DISADVANTAGE. WifH THE IMPkOvEMENTS AND THE COMMITMENT MADE
BY IBM, PL/1 HAS IMPROVED AND PERHAPS WOULD HAVE BEEN THE
BEST CHOICE.

ANOTHER REASON FOR CHOOSING XPL WAS BASED ON THE
OBJECTIVES OF THE PROJECT, NAMELY TO INVESTIGATE HIGHER-
L VEL LANGUAGES FOR TIME-SHARING. OBVIOUSLY ONE MUST REVAMP
THE COMPILER IN ORDER TO PROVIDE THE PROPER STRUCTURING.
MANUFACTURER('S COMPILERS WERE CLEARLY TOO DIFFICULT TO
ALTER, MUCH LESS TO OBTAIN IN SOURCE FORM. OUR RECOURSE WAS
TO USE SMALL, FAST BOOTSTRAPPING COMPILERS. XPL WAS THE ONLY
ONE AVAILABLE AND IT HAD CONSIDERABLE DOCUMENTATION.

THE ONLY CHANGE TO THE COMPILER, TO DATE, WAS THE
ADDITION OF A SIMPLE EDITOR FACILITY. MOST SYSTEMS UPDATE
THE MASTER FILEt PRODUCE A Nti MASTER FILE, AND THEN COMPILE
THE NEW MASTER FILE. THIS INVOLVES AN EXTRA PASS THROUGH THE
SOURCE AND EXTRA DISK/TAPE STORAGE. IT WAS CLEAR THAT THE
COMPILER COULD BE EASILY MODIFIED TO PERFORM THE MERGE AND
COMPILE AT THE SAME TIME. IN THIS MANNER A NEW MASTER FILE
NEEC NOT BE CREATED UNTIL ALL THE CHANGES WERE DEBUGGED.

THE UPDATE PROCESS INVOLVES A SERIES OF Z.LM CARDS
AND SETS OF UPDATE CARDS. A SET OF UPDATE CARDS IS THE GROUP
OF SOURCE CARDS BETWEEN A PAIR OF Mlb CARDS. THESE SOURCE
CARDS CONTAIN THE NORMAL XPL SOURCE STATrMENTS WITHOUT ANY
OTHER REFINEMENTS.

ALTHOUGH THE SMERGE CARDS ARE QUITE PRIMITIVE, THE
BASIC FUNCTION HAS PROVEN INVALUABLE IN OUR DEBUGGING. FCA
ONE THING, WE DO NOT NEED TO LUG BOXES OF CARDS TO BE
:iANGLED IN THE READER. SECONDLY, WE NEED LESS OS INTERACTION
WITH RESPECT TO DO CARDS IF WE USE SIANOARD UPDATE
PROCEDURES. FINALLY. LESS SPACE ON THE DISK IS REQUIRED
SINCE ONLY "GOOD* VERSflNS WILL BE THERE.

CCMMAND STRUCTUREt JANUARY It 1969 7

DATA SET MANAGEMENT COMANDS

THE FOLLOWING COMMANES MANAGE THE UStRIS DATA SETS.
THEY MAKE AUXILIARY STORAGE AVAILABLE TO THE USER FOR DATA
OR PROGRAM RETRIEVAL.

COMMAND PARAMETERS REMARKS

SELECT DATA SET NAME THE SELECTED OLD DATA SET IS
USED FOR ENSUING CCMMANOS SUCH
AS DISPLAY, EDITING COMMANDSo
OR INPUT FOR A COMPILER OR
CTHER PRGGRAM.

CREATE DATA SET NAME CREATE A NEW DATA SET IN THE
CONSOLE USERS nATA FILEP AND
SELECT IT. THE DATA SET WILL BE
AUTOMATICALLY SCRATCHED AFTER
AN ELAPSED PERIOD OF 30 DAYS.

NAME OLD NAME# NEW NAME RENAME DATA SET. THIS COMMAND
IS USEFUL WHEN A PROGRAMMER
DEVELOPES A ROUTINE IN A CATA
SET #TEST'. WHEN HIS IS FINALLY
FINISHED DEBUGGING TO PROGRAM,
HE CAN CHANGE THE NAME TO

'EIGENO.

SCRATCH DATA SET NAME SCRATCP THE DATA SET FROM THE
LIBRARY. IF THE DATA SET HAS
BEEN CREATEU AND SCR.4TCHEO
WITHIN A WEEK THEN THE USER
WILL NOT BE CHARGED FOR THE
AUXILIARY STORAGE SPACE,

EXAMPLES OF EACH COMMAND FOLLOWS: NOTE THAT THE
COMMANDS MAY BE ABBREVIATED AND THAT ONLY THE FIRST 8
CHARACTERS OF THE DATA SET NAME ARE USED.

SELECT JOHN

CREATE PETE

NA ICLO UNEW;

SCR MANY

COMMAND STRUCTURE, JANUARY It 1969 8

DISPLAY COMMANDS

THE FOLLOWING COMMANDS RELATE TO DISPLAY FUNCTIONS. AT

ALL TIMES THE OPERATION IS ON THE LAST SELECTED DATA SET,
AND FURTHERMORE* THE SYSTEM KEEPS TRACK OF THE LAST RECORD
WHICh WAS REFERENCED BY A DISPLAY OR EDITING COMMAND. THEN A
RECORD CAN BE DESIGNATED IN ANY nF SEVERAL WAYS.

DISPLAY IF NO PARAMETER IS GIVEN,
STEP-1 IS ASSUMED.

DISPLAY ALL DISPLAY ALL THE DATA SETS WITH
THE SAME JOB NUMBER,

DISPLAY DATA SETS DISPLAY ALL DATA SETS WITH THE
SAME JOB NUMBER AND USERIS
NAME.

DISPLAY FIRST DISPLAY THE FIRST RECORD IN THE
DATA SET.

DISPLAY KEY=X DISPLAY THE RECORD WHOSE KEY IS
X (I TO 6 CHARACTERS). NOTE

THAT 1' IS NOT THE SAME AS
101. IN FACT '000001' IS NOT
THE SAME TOO.

DISPLAY LAST DISPLAY THE LAST RECORD IN THE
DATA SET.

DISPLAY NUMBER=N DISPLAY THF ,m.H RECOPO IN THE
DATA SET.

DISPLAY STEP*N DISPLAY THE NTH RECORD AFTER
THE LAST RECORD REFERENCED (OR

BEFORE IF N IS NEGATIVE). IF
THE NTH RECORD IS NOT WITHIN

THE SAVE DISK RECORD* THE NTH
RECORD BECOMES THE LAST CARD OF

THE DISK RECORD IOR THE FIRST
ONE).

DISPLAY SURF DISPLAY YOUR JOB/ACCOUNT
NUMBER, NAME* IOCCUNTS, CPU
SECONOS, DATA SET hAME, AND
CURRENT KEY.

DISPLAY TEXTeOXXXI SEARCH, STARTING FROM THE LAST
RECORD REFERENCED# FOR THE
CHARACTER STRING XXX, AND

DISPLAY THE RECORD WHICH
CONTAINS IT.

COMMAND STRUCTURE: JANUARY I, 1969 9

LUSPLAY COMMANDS

TO ANY DISPLAY COMMAND, ANOTHER PARAMETER MAY BE ADDED
WHICH IS A NUMBER WHICH DESIGNATES HOW MANY RECORDS SHOULD
BE DISPLAYED (IF MORE THAN ONE). IF '.OU 00 NOT KNOW HOW MANY
RECORDS ARE Oh THE SELECTED DATA SET $LAST@ IS THE SAME AS
99999. FOR EXAMPLE, TO DISPLAY RECORDS 10, 1L, 12, AND 13 OF
THE SELECTED DATA SET USE THE FOLLOWING COMMAND:

DISPLAY NUMBER - 10, 4

TO SUBMIT A JOB FOR BATCH PROCESSING ONE ISSUES THE

"HASP" COMMAND. THE PARAMETERS FOR "HASP" ARE THE SAME AS

THOSE FOR "DISPLAY". THE ENTIRE OS JCL MUST BE PASSED WITH
THIS COMMAND. FOR EXAMPLE:

HASP FIRST LAST

"PRINT" ANC NPUNCHN MAY REPLACE THE OISPLAYO VERB.
"PRINT* ROUTES THE RECORD TO BE PRINTED WHILE "PUNCH" ROUTES
THE RECORD TO BE PUNCHED. THE SYSTEM WILL INSERT THE
APPROPRIATE JCL CARDS TO ACHIEVE THIS FUNCTION AND SUBMIT
THE JOBS TO THE HASP SYSTEM. THUS THE FUNCTIONS (PRINT AND
PUNCH) ARE LIMITED TO 2000 LINES AND 1000 CARDS. FGR
EXAMPLE:

PRINT TEXT a 'AN APOSTROPHE '' IS OK.''o

NOTES: TU TERMINATE A DISPLAY IN EXECUTION, CAUSE AN
INTERRUPT. IF THIS r TERRUPT IS DETECTED BY THE SYSTEM, THt
DISPLAY WILL BE TERMINATED. LIKE THE OVERALL COMMAND
STRUCTURE ONLY THE FIRST LETTER OF KEY WORDS ARE EXAMINED.
S-l AND S ARE DIFFERENT BECAUSE THE FORMER IS A KEYWORD
(SIGNALLED BY THE EQUAL SIGN) AND THE LATTER IS A POSITIONAL
PARAMETER. FINALLY, TO TERMINATE THE COMMAND SCANNER, ENTER
A SEMI-COLON (;). THIS IS PARTICULARLY USEFUL FOR 22606S
WITH EXTRANEOUS DATA ON THE SCREEN.

COMMAND STRUCURE, JANUARY 1, 1969 10

FOR THE EDITING COMMANDS, EACH RECORO IN THE DATA SiT
MUST CONSIST OF A SIX CHARACTER KEY FOLLOWED BY 72
CHARACTERS OF INFORMATION SUCH AS FORTRAN STATEMENTS OR
DATA. UTILITY PROGRAMS WILL BE AVAILABLE TO READ A CARD DECK
INTO A DATA SET OR VICE VERSA. IN THAT CASEt IN READING, THE
FIRST 72 COLUMNS WILL BE USED AS DATA, AND THE LAST 6
COLUMNS AS KEY, AND ON PUNCHING THE SAME FORKAT WiLL BE
USED.

DELETE RECORD KEY DELETE THE DESIGNATED RECORO.

DELETE FIRST KEV, LAST KEY DELETE RECORDS FROM THE FIRST
KEY TO THE LAST KEY* INCLUSIVE.

DELETE DELETE THE LASY RECORD
ACCESSED* E.G. THE LAST RECORD
DISPLAYED,

IN SIX CHARACTER KEY ENTER THIS RECORD IN THE DATA
FOLLOWED 3Y 72 SET:
CHARACTER RECORD A) IF THERE ARE NO GTHER

RECORDS WITH THIS KEY, AS A NEW
RECORD. OR,

B) IF ONE EXISTS WITH THIS
KEY, AS A REPLACEMENT.

IN OPOER TO LIMIT THE ENTRY TO
NO MORE THAN 80 CHARACTERS,
TIlS COMMAND HAS A DIFFERENT
FORMAT FROM OTHERS:

1) THE TWO LETTER COMMAND
"IN"

2) A KEY

3) 72 CHARACTERS OF TEXT

NOTE: THE KEY IS A STRING OF
ONE TO SIX CHARACTERS, THE KEY
WILL BE RIGHT-JUSTIFIED IF THE
KEY IS LESS THAN SIX CHARACTERS
(LEADING BLANKS ARE INSERTED
INTO THE KEY TO MAKE IT SIX
CHARACTERS). THE NEXT CHARACTER

AFTER THE FIRST BLANK STARTS
THE TEXT. IF THE KEY IS OF 6

CHARACTERS THEN THERE MUST BE
NO INTERVENING BLANKS BETWEEN
IN AND THE KEY, AND BETWEEN
THE KEY AND THE TEXT.

COMMAND STRUCTURE, JANUARy It 1969 11

THE FOLLCWING OPDHAND ALLOWS THE USER TO ENTER INSERT
MODE, INSERT MODE TAKES ANY INPUT WITHOUT SCANNING FOR UHTSS
COMMANDS AND INSERTS THESE RECORDS ACCORDING TO THE KEY
GENERATION FUNCTION. THE NORMAL MODE OF TERMINATION IS AN
ENCOUNTkR WITH THE SENTINEL.

INSERT FIRST KEY, ENTER THE FOLLOWING RECORDS
INCREMENTo INTO THE DATA SET AUTOMATICALLY
SENTINEL GENERATING THE KEYS. THIS

PROCESS WILL STOP WHEN THE
SENTINEL IS ENCOUNTERED.

THE "FIRST KEY" IS A NUMERIC
STRING IONLY 0 TO 9 ARE

ALLOWED).

THE NEXT RECORD WILL HAVE A KEY

WHICH IS THE PREVIOUS KEY PL'US
THE "INCREMENT*.

THE NSENTINEL" IS A STRING OF
UP TO 8 CHARACTERS. THE !EFAULT
STRING IS !TL_.. I'm THE
FUNCTION OF THE SENTINEL IS TO
TERMINATE THIS MOOE OF
INSERTION* THE FIRST 8
CHARACTERS OF THE RECORD ARE
EXAMINED BEFORE IT IS INSERTED.
IF THE SENTINEL STRING IS
ENCOUNTERED* THE PROCESS STOPS.

INSERT BAJ THE STRING 4BASICI MUST APPEAR
SENTINEL TO ENTER THE INPUT BASIC MODE.

IN THIS MODE THE BASIC
STATEMENT LABEL BECOMES THE KEY
OF THE CARD, THE SENTINEL
STRING IS AS THE PREVIOUS
INSERT COMMAND.

NOTE THE BASIC LABEL MUST OCCUR

WITHIN THE FIRST 8 COLUMNS. THE
FIRST BLANK TERMINATES THE SCAN
OF THE LABEL. THE NEXT

CHARACTER STARTS THE TEXT
STATEMENT. IF THERE IS NO KEY
WITHIN THE FIRST 8 COLUMNS, THE
INSERT MODE IS TERMINATED.

COMMANG STRUCTURE* JANUARY 1, 1969 12

THE FCLLOWIN6 COMMANDS ENABLE SPECIAL SERVICES FOR
PROGRAMS EXECUIING ZN THE UbER AREA.

LINK DATA SET SELECTS THE DATA SET AND
TRANSFERS CONTROL INFORMATION
TO THE USER'S BUFFER.

LOAD INDEX READS IN THE LOGICAL TRACK OF
THE NLINKEDN DATA SET
CORRESPONDING TO THE INDEX
VALUE. THE AREA MUST HAVE ITS
ADDRESS IN AREALOC AND BE 3536
BYTES*

OAOL KEY WRITES A LOGICAL TRACK WITH THE
CORkESPONDING KEY, THE AREA
MUST HAVE ITS ADDRESS IN
AREALOC AND BE 3536 BYTES.

THE FOLLOWING COMMANDS ARE A RESULT OF IMPROVEMENTS TOTHE DESIGN EXTENDING THE FLEXIBILITY OF THE SYSTEM.

ALLOCATE ALLOCATES A DATA SET NODE TO A
TERMINAL, PROVIDING THE USER
ACCESS TO MORE THAN ONE DATA
SET. (NOT ISSUED AS A COMMAND).

FREE FREE ALL DATA SET NODES EXCEPT
THE LAST ONE. (SINCE IT IS
PERMANENTLY ASSIGNED TO THE
TERMINAL).

REMOVE REMOVE A TERMINAL REQUEST FROM
MY QUEUE PROPERLY. (RESULT OF
2260 IMPROVEMENTS).

COMMAND STRUCTURE, JANUARY It 1969 13

DAIA SET ASSUGbETa

DURING EXECUTION A PROGRAM MAY REFERENCE UP TO SEVEN
DIFFERENT DATA SETS. SEQUENTIAL, 80 BYTE RECORD I/O IS
ACCOMPLISHED BY USING INPUT(It OUTPUTII)t INPUT12),
OUTPUT(2). DORECT ACCESS, 3000 BYTE RECORD I/O IS
ACCOMPLISHED BY USING FILE(E, FILE(21 OR FILE(3). DEFAULT
DATA SET ASSIGIPMENTS ARE PROVIDED TO SATISFY NORMAL
EXECUTION CONDITIONS. THEY ARE AS FOLLOWS:

EU OlEFAULI
OUTPUT(l TERMINAL
INPUT(2) MOST RECENTLY SELECTED DATA SET

BASIC USES INPUT12) AS THE SOURCE OF THE PROGRAM TO BE
COMPILED. CONSEQUENTLYr THE MOST RECENTLY SELECTED DATA SET
PRIOR TO EXECUTING BASIC WILL BE AUTOMATICALLY SELECTED FOR
COMPILATION. THE FIRST TIME AN UNSPECIFIED FILE IS
REFERENCED FOR kN I/O OPERATION, THE USER IS REQUESTED TO
DEFINE THE DATA SET BY THE MESSAGE

SPEC-.Y DATA SET FOR XXX.

WHERE XXX IS THE REFERENCED FILE. TO SPECIFY THE DATA SET,
TYPE IN THE DATA SET NAME AND PRESS "ENTER". THE DATA SET
SPECIFIED WILL BE SELECTED AND USED FOR ALL SUBSEQUENT
OPERATIONS ON THAT FILE. TO SPECIFY iHE TERMINAL AS THE DATA
SET FOR ANY FILE, TYPE IN "//" AND PRESS "ENTER". AT THE
TERMINATION OF EXECUTION, ALL REFERENCED DATA SET WILL BE
CtSELECTEO AND KEPT.

TO PREVENT DEFAULT ASSIGNMENTS, TYPE IN "U" AFTER THE
PROGRAM NAME TO BE EXECUTED; SEPARATED FROM THE PROGRAM NAME
BY BLANKS OR A COMMA.

PRELIMINARY DESIGN, MARCH It 1969 14

THE UHTSS/2 LIBRARY STRUCTURE ALLOWS VARIOUS TYPES OF
DATA SETS INCLUDING PARTITIONED DATA SETS# SEQUENTIAL DATA
SETS AND DIRECT ACCESS DATA SETS. EACH OF THESE DATA SETS
MAY CONTAIN SEVERAL USER LIBRARIES'OR THERE MAY BE A ONE TO

ONE CORRESPONDENCE. THE ALLOCATION OF THESE DATA SETS IS A
FUNCTION OF THE UHTSS/2 MANAGEMENT.

PUBLIC LIBRARIES ARE DATA SETS THAT ARE MAINTAINED BY
THE UHTSS/2 SYSTEM AND ARE AVAILABLE TO A LARGE NUMBER OF
USERS WITH RELATIVE SECURITY. PRIVATE LIBRARIES ARE DATA
SETS MAINTAINED BY THE USERS THEMSELVES AND ARE ALLOCATED IN
COOPERATION WITH THE UHTSSi2 GROUP. THE SECURITY OF THESE
DATA SETS IS USER DEFINED, (EITHER USING THE SYSTEM SCHEME
OR PROVIDING THEIR OWN PASSWORD ?ROCESSOR). GARBAGE
COLLECTION ON PRIVATE LIBRARIES IS A RESPONSIBILITY OF THE
USER, WHILE GARBAGE COLLECTION ON PUBLIC LIBRARIES IS A
RESPONSIBILITY OF UHTSS/2. USERS WITH PRIVATE LIBRARIES MAY
USE OPERATING SYSTEMS FUNCTIONS TO MAINTAIN AND UPDATE THEIR
FILES IF THESE SYSTEMS FUNCTIONS ARE CAPABLE OF SUCH
MAINTENANCE. UHTSS/2 IS NOT REQUIRED TO MAINTAIN
COMPATIBILITY WITH ANY PRIVATE FILES, HOWEVER THOSE FILES
THAT ARE CURRENTLY UHTSS/2 COMPATIBLE WILL BE COMPATIBLE
WITH FUTURE VERSIONS OF UHTSS/2.

EACH USER LIBRARY MAY HAVE ASSOCIATED PROGRAMMER'S
LIBRARIES. THE PROGRAMMERIS LIBRARIES MAY CONSIST OF MANY
DATA SETS EACH OF WHICH MAY CONTAIN MORE THAN ONE MODULE.
THE USUAL CASE IS CNE MODULE PER DATA SET PER PROGRAMMER
LIBRARY. EACH MODULE MAY HAVE MORE THAN ONE MEMBER, THIS IS
THE CASE FOR A MODULE THAT IS A POSe

PRELIMINARY DESIGN, MARCH 1# 1969 15

UHTSS/2
LIBRARY

*PUBLIC * *PRIVATE*

*TS * *USER I * *USER N $ *JOB NO I* *JO6 NO 2" *JOB NO N*
*LIBRARY * *LIBRARY * *LIBRARY * *LIBRARY * *LIBRARY * *LIBRARY*

PROGMR A *PROGMR Be *PROGMR Z* *PROGMR A* *PkOGMR Be *PRCGMR Z*
*LIBRARY *LIBRARY * *LIBRARY • *LIBRARY *LIBRARY * "'LIBRARY

* *

**** *

*SEQUEN- *PARTI- * *DIRECT * *PARTI- * *DIRECT *SEQUEN-
*TIARY *TIONEO * *ACCESS * *TIONED * *ACCESS * *TIAL *
DATA SET * AT5 * *DATA SET* *DATA SET* *DATA SET* *OATA SET*

* *

5***S*S*5**5555S5*5** 55S***********555S***s**
* * * * * *

MODULE I *MODULE 2$ *MODULE M* *MODULE 1. *MLOULE 2$ *MODULE M*

* * * * A *

MRMBER A *MEMBMR B* *PEMBER zs *PEMGMR AS SPROGMR 8* *MEMBE4R Z*

* *** ***** **** *,***** ***** ***

* * *S *

PRELIMINARY OESIGN9 MARCH 1, 1969 L6

HT jj DIRECT Al.

THE DIRECTORY IS A TABLE OF CONTENTS OF ALL MODULES
WITHIN THE PUBLIC LIBRARY OR INDICATORS TO THESE MODULES
PROVIOING SUCH INFORMATICN. THIS FACILITY iS REQUIRED FOR
USERS SINCE THEY DO NOT HAVE EASY ACCESS TO THE LIBRARIES IN
GENERAL. USERS MUST BE ABLE TO HAVE ALL DATA SETS ASSOCIATED
TO THEIR ACCOUNTS LISTED YET LOCKING OUT THOSE WHO DO NOT
HAVE THE SAME ACCOUNT. THE USER IS REQUIRED TO KEEP TRACK OF
HIS PRIVATE LIBRARY. UHTSS/2 WILL NOT SEARCH PRIVATE
LIBRARIES IN ORDER TO MAINTAIN THEIR INTEGRITY,

U TSSZ2 SYSTEMS LIBRARIES

THE TWO PUBLIC UHTSS/2 SYSTEMS LIBRARIES ARE Ub&LZ
LDLIa A POS WHICH CONTAINS ALL UHTSS/2 MONITOR ROUTINES
AND USERIS PUBLIC LOAD MODULES# AND UbT.Si2 USERLIB. A
DIRECT ACCESS DATA SET WHICH CONTAINS USER PROGRAMS IN
EITHER SOURCE OR OBJECT FORM AND A LIMITED NUMBER OF USER
DATA FILES (RESTRICTED TO SEQUENTIAL CARD IMAGE DATA THAT IS
NORMALLY PASSED THROUGH THE SYSIN DATA SET).

1jdjjULQAnL I

THE UHTSS/2 LOADLIB IS A PARTITIONED DATA SET, POSt
WITH A PRIMARY ALLOCATION OF 50 CYLINDERS. ANY USER MAY
ACCESS THIS LIBRARY SINCE THE LINKEDIT SYSLIB DO CARD WILL
POINT TO THIS DATA SET, I.E. THE LIBRARY WILL BE
CONCATENATED TO LOAD.SYSLIB. THIS LIBRARY WILL BE READ-ONLY
EXCEPT UNDER SPECIAL CONDiTONS. THE SPECIAL CONOITIONS WILL
BE GOVERNED BY THE UHTSS/2 MANAGEMENT TO EFFECTIVELY
SUPERVISE THE LOAD MODULES AND SCRUPULOUSLY RECOVER THE
UPDATE PGM OPERATES BY EXAMINING THE MODULE SPECIFIED AND
THE OPTIONS.

PRELIMINARY DESIGN, MARCH Le 1969 17

THE UHTSS/2 USERLIB IS A DIRECT ACCESS OS DATA SET OF
50 CYLINDERS. ONLY USERS WHO HAVE THE PROPER PASSWORD MAY

ACCESS THIS LIBRARY. LOCK-OUT FEATURES LIKE READ-ONLY TO ANY
JOB NUMBER OR TO NO OTHEF JOB NUMBER OR TO NO OTHER
PROGRAMMER NAME WILL BE IMPLEMENTED. ONE PASSWORD SCHEME IS
JOB NUMBER CONCATENATED WITH PROGRAMMER NAME CONCATENATED
WITH THE MODULE NAME. ADDITIONAL FLAGS WILL BE SET WITHIN
THE MODULE TO INDICATE ITS OTHER LOCK-OUT FEATURES. THE
ACTUAL STRUCTURE OF THE USERLIB FOLLOWS:

A MODULE IS A LOGICAL RECORD.

A LOGICAL RECORD IS ONE OR MORE PHYSICAl TRACKS OF AN
IBM 2314 DISK UNIT, WHICH HAS A DATA TRANSFER RATE OF
III MS PER TRACK* ASSUMING THE AVERAGE SEEK AND
ROTATION TIME. A PHYSICAL TRACK CONTAINS 1200 BYTES. IF
THE LOGICAL RECORD CONTAINS MORE THAN A TRACK, A CHAIN
POINTER WILL BE SET.

A LOGICAL RECORD CONSISTS OF ONE OR MORE LOGICAL
MEMBERS. A LOGICAL MEMBER HAS THREE FLAGS, THE LANCJAGE
FLAG. THE FORMAT FLAG* AND THE TYPE FLAG. THE LANGUAGE
FLAG INDICATES WHETHER THE MEMBER IS A FORTRAN PROGRAM
OR SOME OTHER HIGH-LEVEL LANGUAGE. THE TYPE FLAG
INDICATES WHETHER THE MEMBER IS SOURCE DECK, AN OBJECT
DECK, OR A DATA DECK. THE FORMAT FLAG INDICATES FORMAT
OF THE MEMBER, WHICH IS EITHER CARD IMAGE, PRESSOECK,
OR FRECFORM.

CAR.D IM.W IS EXACTLY AS A CARD WOULD APPEAR, 80 BYTES
OF EBCDIC INFORMATION.

PRESSDECS IS A COMPRESSION OF AN ACTUAL CARD WITH
STRINGS OF THE SAME CHARACTER COMPRESSED INTO 3 BYTES
OF CODED INFORMATION.

FRFFFOR ALLOWS HIGH-LEVEL LANGUAGES TO BE EXPRESSED IN
A SIMPLE SYNTAX. THIS FORMAT ALLOWS THE USER SOME
INDEPENDENCE OVER HIS TERMINAL DEVICE AND FREES HIM
FROM FIXED FORM WHERE COLUMN 7 IS NOT READILY VISIBLE.
WHEN A PROGRAM IN FREEFORM IS PASSED TO A COMPILER,
UHTSS WILL REFORMAT THE DATA INTO ACCEPTABLE FORMAT,
NAMELY PROPER COLUMNS AND SO FORTH. THE FREEFORM SYNTAX
IS SPECIFIED IN BACKUS NAUR FORM. NOTE THAT STRING IS
ASSUMED TO BE THE CORRECT SEQUENCE OF CHARACTERS
ALLOWED BY THE HIGH-LEVEL LANGUAGE.

<LABEL> :- <NULL> I <STRING> I <LABEL>:
<COMMENT> :a * <STRING>
<STATEMENT> :- <STRING> I <COMMENT>
<SENTENCE> :< (LABEL> <STATEMtNT>;
<PROGRAM> in <SENTENCE> I <PROGRAM> <SENTENCE>

PRELIMINARY DESIGN, MARCH 1, 1969 18

SUMMARY OF FLAGS

* TYPE *

* SOURCE D * DATA * * OBJECT *

* LANGUAGE* * * LANGUAGE*

•**••. •* ••*•*** o0*•• *• ,** ** *

* * * • * * *
• * * a *

* FORTRAN b * PL/I • *ASSEMBLER* • * FORTRAN * * PL/I * *ASSEMBLER*

• FORMAT • *• FCRMAT *

**PRESSDECK* *REE FORM* •CARO|MAGEO OPRESSOECKO OfREE FOitso

* Ra MGE
• •••••*•v eeeOO*o• e~oee ••oo• ,•oo# ooee

PRELIMINARY DESIGN. MARCH I, 1969 19

IJHTSSI2 UPDATE

THE FUNCTIONS OF THE UPDATE PROGRAM ARE INCLUDED IN THE
FOLLOWING LIST:

1. INTERROGATE THE INPUT DATA SET WHICH MAY BE A PDS OR AN
ISAM FILE.

2. POSITION DATA SET AT A DESIRED LINE NUMBER OR CHARACTER
STRING.

3. UTILIZE THE WORK AREA DATA SET TO OPTIMIZE THE OTHER
FUNCTIONS.

4. PROVIDE RECOVERY MECHANISMS FOR RETRIEVAL OF FILES

AFTER SYSABEND.

5. ADD OR DELETE CHARACTER STRINGS WITHIN THE GIVEN TEXT.

6. OUTPUT TO THE USER RESULTS OF INTERROGATION
(HARDCOPY/OISPLAY).

7. EDIT TEXTS BY REPLACING ONE STRING FOR ANOTHER STRING
THROUGHOUT THE TEXT.

ACCIDENTAL DELETIONS OF MODULES:

IF A PROGRAM ID IS SPECIFIED, UPDATE PGM ATTACHES
IT AND WAITS FOR ITS COMPLETION. NOTE THAT THE PROGRAM
MUST RESIDE IN THE LIBRARY SPECIFIED, IF NO LIBRARY IS
SPECIFIE;. UHTSS/2 LCADLIB IS USED. IF NO PROGRAM 10 IS
SPECIFIEOt THE UPDATE PGR ATTACHES A MODULE WHICH WILL
OPTIMIZE THE FUNCTIONS BY USING THE BEST ACCESS METHOD
FOR THE GIVEN INPUT DATA SET AND WORK AREA.

PRELIMINARY DESIGN- MARCH It 1969 20

IJANAGEMENT TECHNICUES

SELECTIVE LOADING ALLCWS THE SOPHISTICATED USER TO SAVE

TIME BY ELIMINATING RECO1MPILATIONS AND SOFTWARE GENERATION.

SUPPOSE USER X HAS HIS FORTRAN PROGRAM IN SOURCE

FORM. THE PROGRAM CONSiSTS (IF MAIN ROUTINE AND 3
SUBROUTINES, SUBI, SUB2, AND SUB3. NOTE THAT MAIN CALLS

SUBI WHICH CALLS SUB2 WHICH CALLS SUB3 WHICH CALLS
MULREG. HE HAS COMPILED ALL OF THE MEMBERS OF THE

MO0DULE AND SAVED THEM IN ANOTHER MODULE, SAY OBJTMOO.

BUT MULREG HAS BEEN WRITTEN AND DEBUGGED BY USER Y AND
WAS INSERTED INTO THE PUBLIC LIBRARY. ASSUME THAT SUB2

HAS A BUG IN IT . THE PROBLEM IS HOW DOES USER X

CORRECT SUB2 AND EXECUTE THE PROGRAM AGAIN.

THE SOLUTION IS GIVEN IN A PROTC-TYPE OF TIE

COMMAND LANGUAGE. NOTE THAT MUIREG IS AUTOMATICALLY
LINKED WITH USER XIS PROGRAM.

UPDATE 0400.X*FORTMOD.SUB2

* UPDATE SEQUENCE AS REQUIRED.

FORT 0400.X.FORTMOD.SUB2
SAVE 0400.X.OBJTMODoSUB2
INCLUDE 0400.X.OBJTMOO
ENTRY MAIN
XE Q

AN EXTENSION OF THE Uj COMMAND WILL ALLOW THE

USER -9 COMPILE, LOAD# AND GO WITH A SINGLE
INSTRUt-fIO4. SUPPOSE USER X HAS A MODULE WITH 3

MEMBERS. THE FIRST M4EMBER IS THE FORTRAN MAIN PROGRAM

IN SOURCE FORMo THE SECOND MEMBER IS A FORTRAN
SUBROUTINE IN OBJECT FORM. AND THE THIRD MEMBER IS DATA

IN CARD IMAGE FORMAT.

THE INSTRUJCTION XFQ MyMOD IS EQUIVALENT TO T14E

FOLLOING INSTRUCTIONS, LET TH4E MODULE NAME BE 0MV0OD*
AND THE MtMBERS BE uMAINf ASUbt AND "SYSINo" NOTE
iMAT ASYSINA WOULD BE AUTOMATICALLY INSERTED INTO THE
INPUT STREAM.

FORT 0400*XPYMQDoMAIN
INCLUDE u400.X.MYMOD.SUB
ENTRY 1MAIN
XE G

PRELIMINARY DESIGN, MARCH It 1969 2L

,1ITLTHNAN IS A TECHNIQUE THAT ALLOWS iHE RECOVERY OF
MODULES THAT HAVE BEEN DELETED. WHEN AN OLD MEMBER OF A
MODULE IS UPDATEDo ITS NAME IS CHANGED AND IT IS NOT
SCRATCHED. THE NE" MEMBER IS INSERTED WITH THE PROPER NAME.
IN THIS MANNER, THE GARBAGE COLLECTOR MAY RETRIEVE JDULES
THAT HAVE BEEN ACCIDENTLY LOST. A PROBLEM IS THAT AN U JSUAL
AMOUNT OF DEAD SPACE IS CREATED* SO SHOULD Tn* UHTSS
MANAGEMENT ALwAYS SCRATCH OLD MODULES AT THE END GF A STEP,
OR SHOULD IT ALWAYS SAVE MODULES UNTIL THE END OF THE JOB.,

PASSWORD SECURITY ALLOWS THE USER LOCK-OUT OF USERS WHO
DO NOT SHARE THE SAME JOB NUM-ER OR OTHER ESOTERIC
CONVENTIONS. THE PROPOSED TECHNIQUE IS A METHCD OF P "SWORO
SECURITY, WHERE THE PASSWORD IS THE CONCATENATED STRING OF
CHARACTERS INCLUDING THE JOB NUMBER, THE PROGRAMMER'S NAME,
ANO THE MODULE NAME. THE NEEXT LEVEL OF PROTECTION IS TO
INCLUDE A MODULE PASSWORD AND FINALLY THE MEMBER PASSWORD.
BUT THERE IS STILL A NEED FOR THE ABILITY TO ALLOW REAL.-ONLY
TO ALL USERS WHO KNOW THE PASSWORD AND FINALLY TO ONLY USERS
WHO HAVE THE SAME JOB NUMBER AND PROGRAMMER NAME AND THE
PASSWORD. IN ThE HIERARCHIC' STRUCTURE, THERE IS A S!APLE
ALGORIT H TO DETERMINE THE LGL-OUT MECHANISM. NAMELY AT
EACH LEVEL OF LIBRARY STRUCTURING PROVIDE A FLAG TO INDICATE
ITS RELATIVE PROTECTION. OTHER TECHNIQUES ARE DEVELOPABLE,
BUT THE PREVIOUS METHOD IS THE SIMPLEST.

FOR PRIVATE LIBRARIES, A SIMPLE MECHANISM FOR SECURITY
IS TO SPECIFY THE ODNAME TO BE THE SAME NAME OF A PASSWQRO
PROCESSOR, A LOAD MODULE RESIDING IN UHTSS/2 LOADLIB. WHEN
THE USER SPECIFIES THIS DONAME FOR THE UHTSSii ALLOCATOR,
THE ALLOCATOR WILL USE THAT DONAME AS THE ENTRY POINT NAME
AND ATTACH IT FROM LOADLIB. THE USER PASIWORO PROCESSOR CAN
THEN INTERROGATE THE USER AND RETURN HIS STATUS. HE IS
EITHER ALLOWED TO USE THE DATA SET ENTIRELY* OR ONLY SOME
MEMBERSt OR NOT AT ALL, OR THE SYSTEM SHOULD INVESTIGATE
IMMEDIATELY THAT SOMEONE 1 ATTEMPTING TO BREAK INTO HIS
LIBRARY.

PASSWORaD SECURITY SHODULD RF ENFORCED AT 1HE ALLOCAT.J
f__.USnURCES WHILkH SHOULD OCCUR O, tY AT THE INITIALLI&jjgh

Q, jH O THE USER lQULD NOT Etd.aL5OQOSTANT uERY OF HIS
AkLL1TL.tQ A, _ THE RESOURtES.

PRELIMINARY OkSlGN9 MARCH It 1969 22

USER PROGRAMS EXIST IN ONE OF THREE FORMS:

1. .J91BCE-OH IS THE CARD-IMAGE INPUT TO HIGH-LEVEL

LANGUAGES SUCH AS FORTRAN AND ASSEMBLER.

2. .jFLT.jQ8 IS THE CARD-IMAGE OUTPUT OF HIGH-LEVEL
LANGUAGESt I.E. RELOCATABLE BINARY FOR.o

3. OA R IS THE OUTPUT OF THE LINKAGE EDITOR, I.E.
A COMPACTED RELOCATABLE BINARY FORM.

OBJECT OR LOAD MODULES (PROGRAMS IN OBJECT OR LOAD

FORM) ARE USED TO AVOID RECOMPILATION AND ARE GENERALLY

DEBUGGED ROUTINES. THE USE OF THESE MODULES WILL DECREASE
THE LINKAGE EDITOR'S TIME, LOAD MODULES ARE THE MOST DESIRED

FORM BECAUSE THEY ARE LINKED FASTER* BUT SUFFER THE

DISADVANTAGE OF REQUIRING DIRECT ACCESS ALLOCATION*

DATA BASE STRUCTUREt APRIL 1, 1969 23

SICTURE at QU/MNT 1lPLEMiNTATIoN

*I<- RECORD I ->1<- RECORD 2 ->I

* CYLINDER 0 , c - - - -

* TRACKO J I* • 1 I I
* * I I I
* • I i !
* TRACK9 I o T 0 c I

* CYLINDER I . ..~TRACK O0I* TRCK I I I
. II I

* TRACK 19 0 T OC

* S

* CYLINDER iN/2) .
TRACK 0 1 DIRECTORY PAGE i DIRECTORY PAGE I S i I I
* a III
* • I 1 I
* TRACK 19 I OT O C | FREE TRACK I

* CYLINDER N
* TRACK 0 i I* • I I I
* • I I I
* * I II
* TRACK 19 i OToC I I

* I<- RECORD I ->1<- RECCRD 2 ->I

DATA BASE STRUCTURE, APRIL 19 L969 24

UfcL 1l1ION OF 0S/MVT IfLRENflbATI l

UHTSS USERLIB IS A COLLECTION OF USER LIBRARIES (DATA
SETS) FOR THE UHTSS PROJECT. ITS ORGANIZATION IS DIRECT,
PARTITIONED, AND INDEXED SEQUENTIAL TO MINIMIZE DISK SEEK
TIME, TO REDUCE DISK READ/WRITES, AND TO EFFICIENTLY UTILIZE
DISK SPACE. IT IS DIRECT BECAUSE ANY MEMBER OF ANY USER
LIBRARY IS ACCESSIBLE GIVEN ITS ADDRESS. IT IS PARTITIONED
BECAUSE LIBRARIES ARE DIVIOED LOGICALLLY WITHIN THE USERLIB.
FINALLY, IT IS INDEXED SEQUENTIAL BECAUSE ANY USER MEMBER IS
SEQUENTIALLY ORGANIZED WITH A KEY.

THE PHYSICAL ORGANIZATION OF THE UHTSS USERLIB IS
NEITHER LIMITED TO ONLY A SET OF CONTIGUOUS CYLINDERS NOR
LIMITED TO A SINGLE DISK PACK. UHTSS USERLIB IS ORGANIZED
AND SO STRUCTURED THAT IF IT RES.IDES ON A DEDICATEO DISK
PACK, ARM CONTENTION AND SEEK TIMES WILL BE KEPT AT A
MINIMUM. THE PRESENT IMPLEMENTATION OF USERLIB IS TO MAKE IT
AN OS DIRECT DATA SET WITH HALF TRACK BLOCKS. EACH HALF
TRACK BLOCK IS CALLEC A LOGICAL TRACKv LT, AND IS
CONSECUTIVELY NUMBERED. THE NUMBER OF LOGICAL TRACKS IS
FORTY TIMES THE NUMBER OF ALLOCATED CYLINDERS. NOTE tHAT
ONLY THE PRIMARY EXTENT IS CONSIDERED. THE DISK ADDRESS OF
EACH LOGICAL TRACK IS COMPUTABLE FROM THE LOGICAL TRACK
NUMBER9 LTI, WHL,,E CYLINDER-LT/40* TRACK-MOD(LT#,40l/Z, AND
RECORDUMOD(LT#,2)I,. tj42I3 HEREAFTER, DATA SETS WILL REFER
TO USER DATA SETS* NOT THE USERLIB DATA SET.

THE MAJOR REASON FOR HALF TRACK RECORDS IS THAT THE
UPDATE PROCESS WILL BE COMPLETED IN 1 1/2 REVOLUTIONS; 1/2
REVOLUTION TO READ IT IN, 1/2 REVOLUTION TO UPDATE IN CORE.
AND 1/2 REVOLUTION TO WRITE IT OUT AGAIN. THIS IS ABOUT THE
FASTEST METHOD OF UPDATING THE DISK GIVEN A SINGLE BUFFER.
NOTE TOO, THAT THE HIGH FREQUENCY OF DISK ACTIVITY REQUIRES
INFORMATION TO BE WRITTEN IMMEDIATELY IN ORDER TO INSURE
RELIABILITY.

TIMING CONSIDERATIONS ON THE IBM 2314:

11 DATA TRANSFER OF 3520 BYTES IS 11.5 MS.

2) MINIMUM SEEK TIME TO AN ADJACENT CYLINDER IS 25 MS.

3) AVERAGE ROTATIONAL DELAY IS 12.5 MS.

4) DESIGN AVERAGE SEEK TIME IS 37.5 MS.

DATA BASE STRUCTUREt APRIL I, 1969 25

5T£L&TURE OF UHTSS USRLI

* i DIRECTORY TABLE OF CONTENTS I
* I i
* II

* ---- OP LT i JOB/ACCOUNT NUMBER |
* I S-- -----------------------

* I II

* I
* I -

* *,--> | DIRECTORY PAGEt OP I* I I
* I!

* * -- i P LT I OATA SET NAME, OSNAME i
* I i/
* I I l
* iI
* I
* I ---- - --------------- 0

* ------- > | DATA SET'S PRIMAI/ LOGICAL TRACK i
, I I
* I -

* I P LT I LAST RECORD°S KEY OF P LT i

* ----------- S LT I | LAST RECORD'S KEY OF S LT I1
* I•I

* 0I

* .------. S LT N I LAST RECORD'S KEY OF S LT N1* I I •

* l i I i
* I I I I
* I I----------------------
* I I
, I I ,__ _ _ _ __ _ _ _ _

* I .---- > I DATA SETIS SECONDARY LOGICAL TRACKN I
* I - I* I I I
* I "-- - - - - --

* I

* *-------> I DATA SET'S SECONDARY LOGICAL TRACK 1 .
, I I
, I

DATA BASE STRUCTURE, APRIL li 1969 26

DESCRIPTIQ~ UIT....UIE&I.

THE LOGICAL ORGANIZATION OF THE DATA SET CONSISTS OF A
DIRECTORY AND USER MEMBERS (DATA SETS). THE DIRECTORY
CONSISTS OF A DIRECTORY TABLE OF CONTENTS, OTOC, AND SEVERAL
DIRECTORY PAGES, OP. THE KEY TO ANY USER DATA SET IS ITS JOB
NUMBER, ACCOUNT NUMBER, AND DATA SET NAME, OSNAME. THE OTOC
PROVIDES THE OP NUMBER GIVEN THE KEY CONSISTING OF THE JOB
ANC ACCOUNT NUMBERS. THE OP PROVIDES THE LTS OF THE DATA SET
GIVEN THE KEY CONSISTING OF THE JOB AND ACCOUNT NUMBERS AND
THE DATA SET NAME. A DATA SET CONSISTS OF A PRIMARY LOGICAL
TRACK AND PERHAPS SEVERAL SECONDARY LOGICAL TRACKS. THE
PRIMARY LT CONTAINS A LIST OF POINTERS TO THE OTHER
SECONDARY LTS. THE SECONDARY LTS ARE NOT CHAINED IN ORDER TO
MINIMIZE THE UPDATING PROCESS. WITHIN THE PRIMARY LT AND THE
SECONDARY LTS, THE INDIVIDUAL RECORDS (CARD IMAGES) ARE
SEQUENTIAL WITH RESPECT TO THEIR ASSOCIATED KEYS.

THE TkEE STRUCTURE OF NUSERLIBN IS INDEXED SEQUENTIAL
WITH 3 LEVELS OF DIRECTORIES. THE FIRST DIRECTORY, WHICH IS
CORE RESIDENT, PARTITIONS THE DATA SETS BY JOB/ACCOUNT
NUMBER INTO PAGES. THE SECOND DIRECTORY, RESIDING ON DISK,
PARTITIONS BY DATA SET NAME BY JOB/ACCOUNT NUMBER INTO THE
ACTUAL DATA SETS. THE LAST DIRECTORY, CONTAINED WITHIN THE
DATA SET ITSELF ON DISK. PARTITIONS THE DATA SET INTO
LOGICAL TRACKS.

THUS TO RETRIEVE A BLOCK OF INFORMATION FROM ANY DATA

SET INVOLVES: FIRST, AN IN-CORE SEARCH OF THE DTOC; NEXT, A
DISK READ AND SEARCH OF THE DIRECTORY PAGEt A DISK READ AND
SEARCH OF THE PRIMARY TRACK; AND FINALLY, A DISK READ OF THE
TRACK THAT HAS THE BLOCK OF INFORMATION. NOTE THAT IF THE
TRACK THAT HAS THE DESIRED BLOCK OF INFORMATION IS THE
PRIMARY TRACK, THE TOTAL NUMBER OF DISK READS IS TWO.

DATA BASE STRUCTURE* APRIL 1, 1969 27

,J.jLJCTURE OF DIRECTORY TABE F E NT ENTS,]WE

* BLOCK I _

E OF I
* I NUMBER OF WORDS IN BLOCK 2 I
* I NUMBER OF WORDS IN BLOCK 2
• I NUMBER OF WORDS IN BLOCK 3
• NUMBER OF WORDS IN BLOCK I I

* I NUMBER OF WORDS IN FREE AREA I
* BLOCK2 _..
*• I
• JOB/ACCOUNT NUMBER OF LOGICAL TRACKI
* I DATA SET NAME OF LOGICAL TRACK i
* I USER'S (PROGRAMMERIS) NAME
• I USE COUNT OF LOGICAL TRACK WRITES I
• I SELECT/LOCK KEY FOR LOGICAL TRACK I
* BLOCK 3 .. -_

• I
* NUMBER OF DIRECTORY PAGES

* I LENGTH OF DIRECTORY PAGE TEXT i
* I LENGTH OF JOB/ACCOUNT NUMBER KEY I
• LENGTH OF SELECT/LOCK KEY I
• I DIRECTORY PAGE BLOCK I

• I DIRECTORY PAGE BLOCK N I
* BLOCK 4 .__.
• I
• NUMBER OF CYLINDERS IN EXTENT I
* I LENGTH OF FREE CYLINDER TEXT |

I LENGTH OF KEY OF FCB (=O)
• LENGTH OF SELECT/LOCK KEY (-O) 1
* I FREE CYLINDER BLOCK I I
** I

* I FREE CYLINDER BLOCK N

• II
• | FREE WORK AREA SPACE.

• DIRECTORY PAGE
• I I
• TEXT INFO. I LCGICAL TRACK NUMBER
• K Y INFO. I LAST JOB/ACCOUNT NUMBER IN D PAGE 1
• LOCK INFO. I SELECT/LOCK KEY (-O1

* FREE CYLINDER *

• BLOCK I I
• TEXT INFO. I BIT MAP OF A CYLINDER I

60 "

DATA BASE SrRUCTURE, APRIL It 1969 28

DESCRIPTIGN OF DIRECTORY TABLE OF.CONTENTS. DIOC

THE DTUC PARTITIONS THE USER DATA SETS SO THAT THE
DIRECTORY PAGES ARE EVENLY ALLOCATED. USERS OF THE SAME JOB
NUMBER WITH MANY DATA SETS ARE ALLOCATED AN ENTIRE DIRECTORY
PAGE. THE PARTITIONING ALGORITHM IS A MANAGEMENT DECISION
SCHEME.

THE DTOC CONTROLS THE USE OF THE FREE LOGICAL TRACKS,
FL!t TO EFFICIENTLY ALLOCATE AND GARBAGE COLLECT. EACH
ALLOCATION/COLLECTION CYCLE UPDATES THE OTOC AND THUS
REQUIRES THE REWRITING OF THE NEW DTOC ONTO DISK TO INSURE
SYSTEMS RELIABILITY.

EACH CYLINDER HAS A VERSION OF THE DTOC AS ITS FIRST
RECORD OF 'HE LAST TRACK. BEFORE EACH REWRITE, THE OTOC USE
COUNT FIELD IS INCREMENTED BY ONE. THE UPDATED DTOC IS THEN
REWRITTEN ONTO THE CYLINDER WHERE THE ARM IS TO BE
POSITIONED FOR THE NEXT READ/WRITE, THE OTOC WITH THE
HIGHEST USE COUNT IS THE CURRENT OT(.. THE CURRENT OTOC IS
MODE CORE-RESIDENT DURING THE UHTSS INITIALIZATION PROCESS.

THE CREATION OF A DATA SET kILL CAUSE AN ALLOCATION OF
ONLY THE PRIMARY LT. SECONDARY LTS ARE ALLOCATED ONLY WHEN
THEY ARE REQUESTED. IN THIS MANNER THE USERLIB WILL MINIMIZE
THE DEAD SPACE/GAS IN EACH USERIS DATA SET.

THE DIRECTORY PAGE BLOCK IS A DESCRIPTOR RECORD WHICH
CONTAINS A POINTER TO THE PROPER PAGE TRACK. THIS POINTER IS
THE PAGE LOGICAL TRACK NUMBER.

AT THE PRESENT TIME THE OTOCS REQUIRE 2.52 OF THE DATA
SET CAPACITY.

DATA BASE STRUCTURE, APRIL It 1969 29

jTRUCTURE OF DIRE£TRY PAGE. aP

* BLOCK 1 _____ _ _ _ _ _ _ _
* I

* I NUMBER OF WORDS IN BLOCK I I
* NUMBER OF WORDS IN BLOCK 2
* NUMBER OF WORDS IN BLOCK 3 I
* NUMBER OF WORDS IN BLOCK 4 I
* NUMBER OF WORDS IN FREE AREA I
* BLOCK 2* I
* JOB/ACCOUNT NUMBER OF LOGICAL TRACKI
* I DATA SET NAME OF LOGICAL TRACK I
* I USERIS (PROGRAMMERIS) NAME I
* I USE COUNT OF LOGICAL TRACK WRITES I
* I SELECT/LOCK KEY FOR LOGICAL TRACK I
* BLOCK3
* I
* NUMBER OF ASSOCATED DIRECTORY PAGESI
* 1 LENGTH OF DIRECTORY PAGE TEXT I
* I LENGTH OF DATA SET NAME KEY
* I LENGTH OF SELECT/LOCK KEY m0) I
* I DIRECTORY PAGE BLOCK I I
** I
* I I
* I DIRECTORY PAGE BLOCK N
* BLOCK 4 .__.._* II
* I NUMBER OF DATA SETS IN DP
* I LENGTH OF DATA SET TEXT
* I LENGTH OF DATA SET KEY
* I LENGTH OF SELECT/LOCK KEY
* | DATA SET DIRECTORY BLOCK I
* I

* I DATA SET DIRECTORY BLOCK N

* I FREE WORK AREA SPACE I
* * ,,__, _________________, __,____-_____________

* DATA SET BLOCK .
* I
* TEXT INFO. LCGIG.AL TRACK NUMBEK CF PRIMARY LT I
* I CREATION DATE OF DATA SET I
* I EXPIRATION DATE OF DATA SET I
* I LAST USED DATE OF DATA SET I
* I USE COUNT OF DATA SET I
* I USER'S (PROGRAMMERIS) NAML I
* KEY. INFO JOB/ACCCUNT NUMBER OF DATA SET I
* I DATA SLT NAME I
• LOCK INFO. DATA SET SELECTION/LOCKOUT KEY I

DATA BASE STRUCTURE, APRIL 19 1969 30

] "JPIION OF OIRECTORY PAGE, OP

THE OP CCNTAINS A SEQUENTIAL LIST OF USER DATA SETS
ORDEREC BY JC8 NUMBER9 ACCOUNT NUMBER, AND DSNAME. THE LIST
HAS THE LTb OF THE PRIMARY LT AND ACCOUNTING/MAINTENANCE
INFORMATION. THE "LAST USEDU DATE AND USE COUNT FIELD
REFLECTS THE FREQUENCY OF USE OF THE DATA SET. THE USER WILL
BE CHARGED ACCORDINGLY AND THE UHTSS MANAGEMENT CAN
DETERMINE WHETHER OR NOT THE DATA SET IS TO BE MOVED TO THE
LEAST ACCESSED REGION OF USERLIB OR EVEN ONTO DEAD STORAGE
(TAPEI.

THE PHYSICAL LCCATION OF THE OP IS THE CENTER CYLINDER
OF USERLIB. THE CENTRAL CYLINDER STRATEGY MINIMIZES THE SEEK
TIME FOR USER DATA SETS SINCE THE OP IS ALWAYS ACCESSED
FIRST. THUS THE AVERAGE SEEK TIME BELOMES 37.5 MS FOR A
DEDICATED PACK.

THE SELECTION OF A USER DATA SET REQUIRES ONLY ONE DISK
READ. FROM THE CORE RESIDENT OTOC, THE LT OF THE OP
ASSOCIATED WITH THE DSNAME IS OBTAINED. THAT LOGICAL TRACK
IS THEN READ. FROM THE OP, THE LT# OF THE PRIMARY LT OF THE
DATA SET IS OBTAINED. f THAT THE DATA SET KEY IS THE
JOB/ACCOUNT NUMBER CONCATENATED WITH THE DATA SET NAME.

THE DATA SET DIRECTORY BLOCK IS A DESCRIPTCR RECORD
WHICH HAS A POINTER TO THE PRIMARY TRACK OF THE DATA SET.
THE DATES IN THE RECORD ALLOW THE MANAGEMENT ROUTINES TO
DETERMINE THE STATUS OF THE DATA SET.

AT THE PRESENT TIME, THE DIRECTORY PAGES CONSIST OF
0.9 OF THE DATA SET CAPACITY, ABOUT 1 CYLINDER OUT OF 101
CYLINDERS.

THE ALLOCATION OF OB/ACCOUNTS TO PAGE TRACKS DEPENDS
UPON THE FREQUENCY USE BY THOSE USERS. AT THE PRESENT IT IS
ARBITRARILY ASSIGNED. AN ALGORITHM FOR PAGE OVERFLOW MUST BE
DEVISED. ONE POSSIBLE STRATEGY IS TO MAKE DATA SET BLOCKS
INTO CARD IMAGES AND USE THE TRACK OVERFLOW MECHANISM. BUT
THERE ARE PROBLEMS IN POSITIONING THE PAGE TRACKS NEAR THE
CENTRAL CYLINDER. THE ASSOCIATED DIRECTORY PAGE BLOCKS WILL
BE USED FOR THE OVERFLOW ALGORITHM.

DATA BASE STRUCTURE, APRIL I, 1960 31

,[RUCTURF OF UHISS DATA SET

* BLOfK 1 _ _ •
* I I
* I NUMBER OF WORDS IN BLOCK I |

I NUMBER OF WORDS IN BLOCK 2 I
* I NUMBER OF WORDS IN BLOCK 3
* I NUMBER OF WORDS IN BLOCK 4 I
* | NUMBER OF WORDS IN FREE AREA I
* BLOCK2 .,* I

* I JOB/ACCOUNT NUMBER OF LOGICAL TRACKI
* I DATA SET NAME OF LOGICAL TRACK I
* I USEROS (PROGRAMMER'S) NAME I
• I USE COUNT OF LOGICAL TRACK WRITES I
* I SELECT/LOCK KEY FOR LOGICAL TRACK I
* BLOCK 3-

* I NUMBER OF LOGICAL TRACKS IN MODULE I
• I LENGTH OF LOGICAt TRACK TEXT
* I LENGTH OF LOGICAL TRACK KEV
* I LENGTH OF LT SELECT/LOCK KEY I
* I LOGICAL TRACK BLOCK I I
• I *I

• I • I
* I LOGICAL TRACK BLOCK N I

BLOCK4

• I NUMBER OF CARD IMAGES IN MCOULE I
• I LENGTH OF CARD TEXT
* I LENGTH OF CARD IMAGE KE. I
* I LENGTH OF CARD IMAGE LOCK (O)
* I CARD IMAGE I I
• I I
• I •

• I CARD IMAGE M i

* I I
* | FREE WORK AREA SPACE

* LT BLOCK .• I I
* TEXT INFO. i PCINTER TO TV-E LOGICAL TRACK I
* KEY INFO. I KEY OF THE LAST CARD IN THAT LT |

* CARD IMAGE . _ __,. .. .-
* I I
• TEXT INFC. ! ACTUAL TEXT
* KEY INFO. I KEY FOR THE TEXT

DATA BASE STRUCTURE, APRIL It 1969 32

ESCRIPT1ON OF"UHTSS DATA SET

THE USER DATA SET CONSISTS OF A PRIMARY LT AND PERHAPS
SEVERAL NON-CONSECUTIVE SECONDARY LTS. THE PRIMARY LT HAS A
LIST OF SECONDARY LTS THAT IS ORDERED BY THE KLY OF THE LAST
RECORD OF THE LT. A SEGMENT OF THIS LIST IS RESIDENT WITHIN
THE ACTIVE TERMiNAL TABLE TO MINIMIZE THE REACING OF THE
PRIMARY LT FOR THE LT ASSOCIATED WITH THE UPDATE KEY. EACH
LT CONTAINS CARD IMAGE RECORDS ORCERED BY THEIR ASSOCIATED
KEY*

THE UPDATE OF A USER DATA SET REQUIRES ONLY I DISK
REVOLUTION FROM THE INITIAL READ. FROM THE ACTIVE TERMINAL
TABLE, THE LTB OF THE ASSOCIATED LT IS OBTAINEO. THE PROCESS
OF READING THE LT, UPDATING IT, AND WRITING IT OCCURS WITHIN
I 112 REVOLUTIONS BECAUSE THE UPDATE PROCESS TAKES LESS THAN
A HALF REVOLUTION. FOR UPDATES WITHIN A DENSE REGION OF THE
USER DATA SET, THE MAXIMUM DISK READ/WRITES IS 2. FOR SPARSE
UPDATING v THE MAXIMUM NUMBER OF DISK READ/WRITES IS 3.

THE PRIMARY USE OF THE USER DATA SET IS TO STORE USER
PROGRAMS IN CARD IMAGE FORM. HOWEVER, A SECONDARY FEATURE
PERMITS XPL BINARY PROGRAM IMAGES.

II

DATA BASE STRUCTURE, APRIL 1, 1969 33

APe . GENERALIZED STRUCTURE FOR LOGICAL TRACKS

• BLOCK 1 . .
• IMAP BLOCK) I
• I NUMBER OF WORDS IN BLOCK I I
• I NUMBER OF WORDS IN BLOCK 2 I
• I NUMBER (UF WORDS IN BLOCK 3 I
• I NUMBER OF WORDS IN BLOCK 4 1
* 1 NUMBER OF WORDS IN FREE AREA I
• B LOCX 2 . .__-. _ .
• (LABEL.3 BLOCK) I
• I JOB/ACCOUNT NUMBER OF LOGICAL TRACKI
• I DATA SET NAME OF LOGICAL TRACK I
• I USE COUNT OF LOGICAL TRACK WRITES I
• 1 USER'S (PROGRAMMEROS) NAME
4. 1 SELECT/LOCK KEY FOR LOGICAL TRACK I
• BLOCK 3
• (KEYS BLOCK) I
• I NUMBER OF SUB-BLOCKS IN THIS BLOCK I
• I LENGTH OF SUB BLOCK TEXT IN WORDS
• I LENGTH OF SUB BLOCK KEY IN WORDS I
• LENGTH OF SUB BLOCK LOCK IN WORDS I

• I SUB-BLOCK I OF THIS BLOCK I

• SUB-BLOCK M OF THIS BLOCK I
• BLOCK 4 .
• (TEXTS BLOCK) I
• I NUMBER OF SUB-BLOCKS IN WPIS BLOCK J
• I LENGTH OF SUB BLOCK T'XT JN WORDS I
• | LENGTH "V- SUB BLOCK KkY IN WCRfjS I
• I LENGTH OF SUB bLOCK LOCK IN WORDS I
* I StB-BLOCX I OF THIS BLOCK |
, | • 1

* I SUB-BLOCK N OF THIS BLCCK

• I I
• I FREE WORK AREA SPACE I

* SUB-BLOCK• It
• 1 DATA AREA OF THE SUB-BLOCK t
* I KEY AREA OF SUB-6LOCK (OPTIONALl
* | SELECTIONI/LOCKOUI AREA (OPTIONAL) I

-:.I

-TA BASF STKLCTURE, APRIL It 1969 34

THE PROVIUES A MAP OF THE LOGICAL TRACK, I.E.

WHERE EALh HLiCK IS LOCATED. THUS THE RELATIVE ADDRESS OF
tILLCK 4 I TH AUDRESa OF BLOCK I PLUS THE SUM OF THE NUMSER

OiF YTES IN bLLCKS It 2 AND 3. USING THIS MAPPING TECHNIQUE,

ItWIVIOUAL 8LCCKS MAY BE EXPANDED OR CONTRACTED WITHOUT

AFFECTING IHE G|HEk BLOCK ADDRESSES.

THE LA1lL1-Ba._. PROVIDES INFORMATION ABOUT THE LOGICAL
TRACK ITSELF. IT ASSOCIATES THE LCGICAL TRACK TO A
J(b/ACLOUNT NUMbER AND A DATA SET NAME. FOR SYSTEM LOGICAL

TRACKS, THE DATA SET NAMES ARE mOTCC" CR "D PAGE". IT ALSO
P 4GVIJES INFORMATION REGARDING THE NUMBER OF TIMES THE

LCGICAL TRACK HAS BEEN WRITTEN.

THE - PROVIDES A LIST OF KEYS AND ASSOCIATEC

PCINTERS FOR wATA CHAINING. THE POINTERS ARE LCGICAL TRACK
' MdERS.

THE L7. ILfJ LC PROVIDES A SEQUENTIAL FILE OF KEYED

RECORDS. IF THERE IS A REQUEST FOR AN UNKEYED FILE, THE
LENGTH OF THE KEY AREA SHOULD BE ZERO. NOTE THAT BOTH THE

KEYS AND TEXTS BLOCKS HAVE THE SAME STRUCTURE. THE SAME

STRUCTURING ALLOWS ONLY I PROGRAM TO PERFORM THE DATA
MANAGMENT. THE SELECTION/LCCKOUT AREA IS PRrV)'kEO TO INSURE

A LEVEL OF PROTECTION FOR INDIVIDUAL RECORDS. SINCE THE
SELECTION/LOCKOUT AREA IS OPTIGNAL, THE LENGTH OF CHE

SELECT/LOCK KEY MAY BE ZERO.

THIS LOGICAL TRACK HAS BEEN ORGANIZED IN WORDS EVEN

THOUGH THERE IS AN OBVIOUS INEFFICIENCY IN STORAGE USAGE. IT

IS MORE IMPCRTANT TO GAIN SPEED IN COMPUTATION THAN

MINIMIZING STORAGE.

'ATA BASE STRUCTURE, APRIL 1, 1969 35

Q LAUL

USING A STAND-ALONE RCUTINE, PASO PRINT, THE FOLLOWING

INFRMATIJON ABOUT THE DISK FILE HAS BEEN VERIFIED: EACH
PHYSICAL TRACK IS CIVIDED INTC 3 RECORDS. RECORD C IS A 16
,YTE kECORC WHERE THE FIRST 8 BYTES ARE FOR THE CCUNT AND
IHE CTHER 8 FOR THE CATA. RECORDS 1 AND 2 ARE 3528 BYTE
RECLPCS WHERE THE FIRST 8 BYTES ARE FOR THE COUNT AND THE
kEMAINING 3520 BYTES FOR THE CATA. THE COUNT AREA IDENTIFIES

THE RECORD (IN TERMS OF CYLINDER NUMBER, HEAD NUMBER, AND
eECURD , UMEERI AND I0:DIATES THE RECORD'S FORMAT (COUNT-
DATA) AND LENGTH* THE DATA AREA CONTAINS THE RECORD

INFCRMATICN.

IF MORE THAN CNE DISK PACK IS AVAILABLE, IT IS EASY TO
TREAT THE LIBRARY AS ONE GARGANTUAN DISK PACK WITH A TABLE
TO TRANSLATE THE LT#S TO THE APPROPRIATE DISK PACKS. THIS
SCHEME IS EQUIVALENT TO SOFTWARE PAGING TECHNIQUES.

IF MORE CORE IS AVAILABLE, THEN THE DISK READS SHOULD
BE UuFFERED. ANY OPERATION UPON THE TRACK WOULD, HOWEVER,
REQUIRE IMMEDIATE DISK WRITES. AGAIN HIS IS TO INCREASE
RELIABILITY.

THE CARD IMAGES MAY BE "PRESSED-DECK* TO SOME DEGREE.

ESSENTIALLY THE TRAILING BLANKS COULD BE DELETED. THIS
EXTENSION WILL INCREASE THE STORAGE CAPACITY CF THE DISK

FILE AND NOT SIGNIFICANTLY DECREASE THE USUAL PROCESSING.
THE MAJOR DESIRE FOR SUCH AN IMPLEMENTATION IS TO DECREASE
THE NUMBER OF CHARACTERS TO BE TYPED BY THE TELETYPES. TO

THIS END, THE KEY BLOCK SHOULD PRECEDE THE TEXT BLOCK.

IT IS NOW CLEAR THAT THE USE OF POINTERS WITHIN THE
TRACK IS FEASIBLE IF IT WCULD DECREASE DATA MOVEMENT AND THE
ACCED EXPENSE Of- 2 BYTES PER RECORD IS NOT PROHIBITIVE. IN
FACT ONE COULD PROBABLY KEEP VARIABLE LENGTH RECORDS WITH

POINTERS. AT TRACK OVERFLOW TIME, A GARBAGE COLLECTCR WOULD

BE EMPLOYED. HOWEVER, TO IMPLEMEMT SUCH AN INITIAL DESIGN IS
TOG COMPLICATED A TASK CONSIDERING THE MAGNITUDE OF THE
OVERALL STRUCTURE OF THE LIBRARY MANAGEMENT. IT IS CERTAINLY
EASIER TO DEVELOP THE EDIT AND DATA MANAGEMENT ROUTINES
FIRST KNOWING THAT ONE IS PLAYING WITH CARD IMAGES.

LIBRARY MANAGEMENT ALGORITHMS, NOVEMBER 7, 1969 36

TRACK MANAGEMENT

ALLUCAT ION Oflfll-af

THE FREE LOGICAL TRACKS ARE KEPT IN A POOL IN ORDER TO

ALLOCATE THEM IN THE MOST EFFICIENT MANNER. SINCE THE

ALLCCATION SCHEME POSITIONS THE TRACKS NEAR THE CENTRAL
CYLINDER, ALL THE DATA SETS WILL BE CLUSTERED ABOUT THE

CENTRAL CYLINDER. THEN THE AVERAGE SEEK TIME WILL BE NEAR
MINIMUM.

1. EXAMINE THE CORE TABLETS FREE CYLINDER BLOCK.

2. FIND A CYLINDER NEAR TO THE CENTRAL CYLINDER.

3. EXAMINE THE BIT MAP OF THE FREE LTS IN THE CYLINDER
BLOCK.

4. TAKE THE FIRST FREE LT AND INDICATE THAT IT'S

ALLOCATE0.

5. SIGNAL THAT THE OTOC MUST BE REWRITTEN.

C .LLELIGNf FREE LOGICAL TRACKS

THE COLLECTION OF FREE TRACKS USUALLY OCCURS DURING THE

LOGICAL TRACK UNDERFLOW COhNDITION. HOWEVER UTILITY PROGRAM
WILL ALSO PERFORM THIS GARBAGE COLLECTION TO ELIMINATE
UNUSED OR EXPIRED DATA SETS.

0. EXAMINE THE CORE TABLEOS FREE CYLINDER BLCCK.

1. DETERMINE THE CYLINDER NUMBER FROM THE LT NUMBER.

2. DETERMINE THE TRACK NUMBER FROM THE LT NUMBER.

3. DETERMINE THE RECORD NUMBER FROM THE LT NUMBER.

4. GET THE CYLINDER BLOCK CORRESPONDING TO THE
COMPUTED CYLINDER NUMBER.

5. SET THE APPROPRIATE BIT TO INDICATE THAT IT IS
FREE.

7. INDICATE THAT THE OTOC MUST BE REWRITTEN.

LIBRARY MANAGEMENT ALGORITHMS, NOVEMBER 7, 1969 37

"OGICAL TRACK .,VERFLOW

WHEN AN INSERTED CARD FILLS THE LOGICAL TRACK TO
CAPACITY, A LOGICAL TRACK OVERFLOW CONDITION EXISTS. THE LT
MUST THEN BE REORGANIZED TO ALLOW FURTHER EXPANSION. THIS
REORGANIZATION REQUIRES ONLY 4 DISK READ/WRITES. THE PROCESS
REQUIRES THE FOLLOWING STEPS.

1. SAVE THE LAST 15 CARDS OF THE FILLED TRACK.

2. WRITE OUT THE UPDATED TRACK.

3. GET THE PRIMARY LOGICAL TRACK*

4o GET A FREE LOGICAL TRACK.

5. UPDATE THE CHAINING INFORMATION.

6. WRITE OUT THE PLT.

7. CREATE A NEW FLT IMAGE IN THE BUFFER.

8. INSERT THE SAVED 15 CARDS.

9. WRITE OUT THE NEW TRACK.

JIn"AL TRACK UNDEREL9

WHEN THE RESULT OF A DELETION REQUEST LEAVES ONE OR NO
CARD IN A TRACK, A LOGICAL TRACK UNDERFLOW CONDITION EXISTS.
IF THE TRACK IS EMPTY, IT IS SIMPLY FREED BACK TO THE SYSTEM
AND REMOVED FOR THE PRIMARY TRACK DIRECTORY. FOR THE OTHER
LASE (ONLY A CARD LEFT), EITHER THE FIRST OR THE LAST CARD
IS INSERTED INTO THE NEXT LOGICAL TRACK AFTER THE TRACK IS
FREED TO THE SYSTEM.

LIBRARY MANAGEMENT ALGORITHMS, NOVEMBER 79 1969 38

DATA SET MANAGEMENT

IULII DATA SET QCTI~

* SURF TABLE*

-------------------------------- S

* I OSHEAD
-- *

* -- a

*--- * I DSPNTR * I
I-------------------------a

I * DSNOOE *<-

I * I NEXT DSNODEI
I a-- *

*--> * SNODE *<-

* ---------------------------------------

* I NEXT OSNODE I *--

* I NEXT OSNODE I *--
* --------------------------------------- a

NULL (-

LIBRARY MANAGEMENT ALGORITHMS, NOVEMBER 7, 1969 39

b Q UlA" Lc

THE MULTI DATA SET ALLOCATION SCHEME PROVIDES THE
SWAPPING PROGRAM THE ABILITY TO ACCESS MORE THAN ONE DATA
SET. IT ACCOMPLISHES THIS FUNCTION BY ALLOCATING A DATA SET
CONTROL BLOCK, DSNUDE, FOR FOR EACH DATA SET. THE OSNODES
CONTAIN THE INFORMATION REQUIRED TO PROCESS A DATA SET,
NAMELY THE DATA SET NAME, PRIMARY LOGICAL TRACK NUMBER, THE

SECONDARY LOGICAL TRACK NUMBER, ANO THE APPROPRIATE KEYS.

AT INITIALIZATION# A LIST OF FREE DSNCODES IS CREATED
WITH EU.EUA AS THE ACCESS POINTER. THEN EACH TERMI4AL IN
THE SYSTEM IS ALLOCATED A DSNODEo

WHENEVER A "SELECTO OR "CREATE" COMMAND IS ISSUED FROM
"SMONvt A NEW DSNODE IS OBTAINED FROM THE FREE DSNODE LIST
AND STACKED ONTO THAT TERMINAL'S LIST. EACH TERMINAL HAS A
POINTER TO THE HEAD OF DSNODE STACK v OSHEADv AND A POINTER
TC THE CURRENT DSNODE, DSPNTR. WHEN THE DATA SETS ARE NO

LONGER REQUIRED, ALL OSNODES EXCEPT THE LAST ONE IN THE
STACK IS REMOVED AND RETURNED TO THE FREE DSNOOE LIST.

LIBRARY MANAGEMENT ALGORITHMS, NOVEMBER It 1969 40

ULTI £ATA SET ALLOCATIN

FREE OSNODE LIST

I FREENEAD -

----------------------- --

* OSNODE * <--

• *

----------------------- -------------- S

* l NEXT FREE OSNODE | *
------------------------------------- S•* * I

• *

• DSNODE *<-

• *
• *

------------------------ S

* } NEXT FREE OSNODE i *
S -------------------- *
• * I

* OSNODE * <--.
• *
, *

, *

*-------------------------------------S
• ,-- NEXT FREE OSNODE *

------------------------ 0

I
NULL C--.

LIBRARY MANAGEMENT ALGORITHMS, NOVEMBER 7v 1969 41

JELECTIaN PROCESS

THE SELECTION PROCESS ALLOWS THE USER TO ACCESS THE
UHISS LIBRARY. THE APPROPRIATE ENTRIES IN THE UHTSS TABLES
WILL INDICATE THAT FACT,

lo EXAMINE THE CORE TABLE'S DIRECTORY PAGE BLOCK.

2. USING THE JOB/ACCOLNT NUMBER, OBTAIN THE ASSOCIATEu
DP ENTRY.

3. FfjM THE ASSOCIATED OP ENTRY, OBTAIN THE LT# OF THE
OP.

4o READ IN THE ASSOCIATED DIRECTORY PAGE.

5. USING THE JOB/ACCOUNT NUMBER AND THE DATA SET NAME,
OBTAIN THE ASSOCIATED DATA SET BLOCK.

6. FROM THE ASSOCIATED DATA SET BLOCK, OBTAIN THE
PRIMARY LTO OF THE DATA SET.

7. FILL THE UHTSS TABLES WITH THE APPROPRIATE
INFORMATION.

8. UPDATE THE CURRENT DATE FIELD AND WRITE IT BACK
OUT.

9. ISSUE WARNING IF CURRENT DATE IS GREATER THAN
EXPIRATION DATE.

10. POSITION THE DATA SET TO THE FIRST RECORD CN THE
DATA SET. (SKIP THIS IF THE DATA SET IS LOADABLE.)

THE CREATION PROCESS INVOLVES THE CREATICN CF A FREE
TRACK IMAGE IN THE BUFFER AND WRITING IT OUT. THE DIRECTORY
PAGE IS ALSO LPDATED.

SCRATCH PRUCESS

SCRATCHING WRITES A FREE TRACK IMAGE ONTO DISK FOR EACH
LI TRACK. THEN THE ENTRY IN THE DIRECTORY PAGE IS DELETED.

LIBRARY MANAGEMENT ALGORITHMS, NOVEMBER 7t 1969 42

LADARLE DATA SET

A LOADABLE DATA SET, LOSt IS AN USER DATA SET IN THE
UHTSS LIqARY WHICH CONTAINS THE XPL GENERATED CORE IMAGE OF
A LOAD MODULE. EACH TRACK OF THE DATA SET CONTAINS 3000
BYTES CF THE CORE IMAGE. THE FIRST TRACK CONTAINS A CONTROL
BLCCK OF 60 BYTES.

"HE GENERATION OF A LOS REQUIRES THAT THE COMPILER
GENERAiE THE ENTIRE DATA SET IN CORE WITH THE CONTROL BLOCK.
THE CODE MUST BE RELOCATABLE. THE COMPILER THEN ISSUES THE
LINK COMMAND, WHICH SELECTS A DATA SET. UPON SUCCESSFUL
COMPLETION OF THE COMMAND, THE "OAOL" COMMAND WITH A KEY IS
ISSUED TO WRITE OUT THE DATA SET.

THE FUNCTION OF OAOLw IS TO WRITE OUT BLOCKS OF CORE
IMAGES ONTO DISK. THE USER MUST GIVE A KEY IN THE COMMAND
FOR THAT BLOCK OF CORE CORRESPONOING TO HAREALOCO. NOTE THAT
NOT ONLY CORE IMAGES BUT BLOCKED CARD IMAGZS MAY BE WRITTEN.
"GAGLN ACTS EXACTLY LIKE "INSERT", NAMELY ADDS A NEW LOGICAL
TRACK IF THE KEY DOES NOT EXIST AND REPLACES IT CTHERWISE.

IN ORDER FOR THE USER PROGRAM TO READ A DATA SET, HE
MUST FIRST DECIDE HOW HE IS GOING TO ACCESS THE RECORDS.
CURRENTLY, DATA SETS ARE READ ONLY FOR BOTH COMPILER INPUT
AND INPUTTING COMPILERS. THUS THE DATA SET MUST BE ,LECIF
IN ORDER TO OBTAIN THE PRIMARY LOGICAL TRACK ADDRESS. SINCE
INPUTTING COMPILERS AND COMPILER INPUT ARE SPECIAL KINDS OF
REQUESTS THE IJM COMMAND PERFORMS THE SELECT AND STUFFS THE
SURF BUFFER WITH SOME CONTROL INFORMATION. THE MOST
INFORMATION IN THE SURF BUFFER IS MEANINGLESS FOR COMPILER
INPUT WHILE SCME OF THE DATA IS MEANINGFUL FOR INPUTTING
COMPILERS. THE CCNTROL INFORMATION IS DISCUSSED IN THE
CONTROL RECORD FORMAT SECTION.

THE MOST EFFICIFNT METHOD OF READING IN A DATA SET IS
TO READ IN LOGICAL TRACKS. FOR INPUTTING COMPILERS, A
LOGICAL TRACK IS 3000 BYTE OF CODE. BUT FOR COMPILER INPUT,
A LOGICAL TRACK CONTAINS SEVERAL CARD IMAGES, I.E. IT IS
ESSENTIALLY A VARIABLE NUMBER OF CARD IMAGES (80 BYTES).
THUS THE TARGET AREA SPECIFIED IN AU." MUST BE 3536
BYTES, 3520 FOR THE BLOCKED RECORDS AND 16 BYTES FOR THE
BLOCK CONTROL INFORMATION (NUMBER OF CARDS IN THE TRACK AND
OTHER DATA). TO ADO SOME FLEXIBILITY THE LOAD COMMAND MUST
INCLUDE THE INDEX, WHERE INDEX TELLS WHICH LOGICAL TRACK IS
TO BE READ. NOTE THAT INDEX RANGES FROM 0 TO 0SUBBLOCKS-1.
THUS TO READ IN A COMPILER, ONE MUST ISSUE AS MANY LOADS AS
THERE ARE LOGICAL TRACKS. AREALf. MUST BE INCREMENTEG EVERY
TIME. TO READ IN COMPILER INPUT, THERE IS AN ADDITIONAL
COMPLEXITY, I.E. THE USER MUST DEBLOCK THE RECORDS USING THE
BLCCK CONTROL INFORMATION.

LIBRARY MANAGEMENT ALGORITHMS, NOVEMBER 7v 1969 43

".NTROL RECORD FORMAX

THE CONTROL BLOCK HAS THE FOLLOWING FORMAT:

WORD CONTENTS

0 NUMBER OF BYTES OF FULL PROGRAM CODE
I NUMbER OF BYTES OF FULL DATA CODE
2 NUMBER OF PROGRAM RECORDS
3 NUMBER OF DATA RECORDS
4 NUMBER OF BYTES IN A RECORD
5 NUMBER OF BYTES IN THE LAST PROGRAM

RECORD
6 NUMBER OF BYTES IN THE LAST DATA RECORD
B NUMBER OF LOGICAL TRACKS IN THE DATASET.

(AUGMENTED ONLY DURING THE .LI COMMAND)
9 NUMBER OF BYTES OF PROGRAM CODE

WORDS 0 TO 6 ARE GENERATED BY THE XPL COMPILER AND ARE
NOT MANIPULATED BY TSS-LIBRARY. WORD 8 IS STUFFED INTO THE
SURF BUFFER ONLY FOR THE J COMMAND. IT DOES NOT EXIST ON
THE DATA SET. WORD 9 IS GENERATED BY I -.L IAR AND GIVES
THE RELATIVE ADDRESS OF THE START OF THE DATA AREA FOR USE
BY 18aL

LIBRARY MANAGEMENT ALGORVTHMSv NOVEMBER 7. 1969 44

JOB MANAGEMENT
ISLLjAR&Y_.j.iEWE PROCESSING

TSS-LIBRARY QUEUE MAY HAVE oORE THAN ONE REQUEST AT ANY
TIME. EACH REQUEST MAY REQUIRE EITHER SINGLE SERVICE OR
MULTIPLE SERVICE. THE NEW DESIGN PHILOSOPHY IS TO PROCESS
ALL REQUESTS AS SINGLE SERVICE IN A OjhQ R16LB FAShION. THE
REASONS FOR THIS DESIGN IS PRIMARILY TO GIVE EQUITABLE
TREATMENT TO REQUESTS (AND THLiREFORE THE USERS) AND
SECONDARILY TO GIVE SOME PSYCHOLOGICAL REASSURANCE TO THE
USER.

THIS IRQIhD ROSIN APPROACH IS THE SAME AS TIME SLICES IN
THE LARGER SYSTEM ENVIRONMENT. THUS A USER WHOSE REQUEST IS
QUEUED AFTER FIVE OTHERS WILL RECEIVE SOKE SERVICE AFTER
PROCESSING THE FIFTH SERVICE REQUEST. THIS APPROACH DIFFERS
RADICALLY FROM THE INITIAL DESIGN WHICH WAS A £.LE QUEUE
WHERE THERE WAs NO DISTINCTION BETWEEN SINGLE SERVICE AND
MULTIPLE SERVICE REQUESTS. FOR SINGLE SERVICE REQUESTS EJU
OR RuND goal PROCESSING IS EQUIVALENT. HOWEVER, FOR
MULTIPLE SERVICE REQUESTS. THE *ROUND ROBIN m APPROACH LETS
THE USER KNOW EVERY SO OFTEN (DEPENDS ON THE QUEUE LENGTH)
TPAT HIS REQUEST IS BEING SERVICE0, THUS REASSURING HIM THAT
HE IS STILL ACTIVE WITHIN THE SYSTEM.

THERE IS STILL S AN INHERENT INEFFICIENCY IN THE &OLN
RORL APPROACH WITHIN THE TSS-LIBRARY ENVIRONMENT. THIS
ENVIRONMENT MUST NOW READ IN THE PRIMARY LCGICAL TRACK TO
DETERMINE WHICH SECONDARY LOGICAL TRACK IS TO BE OPEkATED
UPON. THUS THERE ARE ADDITIONAL DISK READS EVERY TIME A
RtQUEST IS SERVICED. THE f= SCHEME COULD SAVE THE
NECESSARY INFORMATION AND THUS ELIMINATE MOST OF THE READING
OF THE PRIMARY TRACKS.

THE IMPLEMEKTATION OF MULTIPLE SERVICE ROUTINES
REQUIRES A NEW EXAMINATION CF THE USUAL COMMAND STRUCTURE.
ESSENTIALLY A FIELD, u IfAlT MUST KEEP A RECORD OF THE NUMBER
OF TIMES THE COMMAND IS TC BE EXECUTED. ADDITIONAL FIEtDS
MUST CONTAIN THE PROPER INFORMATION TO SERVE AS INDICES FOR
VARIOUS PARAMETERS. NOTE THAT THE COMMAND NEEC NOT BE WITH$N
THE BUFFER SINCE iUTjLP ALREADY INOICATES THE COMMAND. THUS
IF COUNT IS ZERO, THE REQUEST IS SINGLE SERVICEp OTHERWISE
IT IS MULTIPLE SERVICE REQUEST. EVENTUALLY WHEN "COUNIN
BECOMES ZERC, THE REQUEST WILL BE DELETED FROM THE QUEUE.
FOR COMPLEX OPERATIONS IN "OUTPUTERO t5L QLj IS USED TO
DISTINGUISH THE SUB-FUNCTIONS.

FINtALLY. THEaC IS ANOTHER COMPLICATION, I.E. THE HASP
SLBMISSION. THE ROUNO ROBIN APPROACH CANNOT BE USED SINCE IT
WOULD INTeRSPeRSE ONE USER'S JCL WITH ANOTHER'S JCL. FOR
THIS CASE, CNLY CNE USER IS PROCESSED WHILE THE CTHER HASP
REQUESTS ARE PASSED OVER. THUS WITHIN THE RCUNO RCBIN
STRUCTURE ThERE IS A SINGLE SERVER SUBQUEUk.

LIBRARY MANAGEMENT ALGORITHMSt NOVEMBER 7o 1969 45

QUEUE PE&CESSING

i QUEUEI I

---- I
SI QUEUE? I Il

* JSURF NODE (-.

I POINTER I * .

I **•***************$,0*****4***.*********** I
* SURF NODE 4<--.

*--

* I POINTER I * --- °
-- --------------------

I ***

I I
I ****************4S************************

-- > * SURF NODE * <--.
• *

* I POINTER J * ---.

NULL <--.

TMCN PLACES REQUESTS IN A QUEUE FOR TSS-LIlbAkY. *HEN
TSS-LIBRARY HAS SATISFIED THE REQUEST, IT POSTS tHE
COMPL(TION OF ITS TASK AND TMON REMOVES THE ELEPEhT FROM THE
QUEUE. OQUEUEI* POINTS TO THE FIRST REQUEST WHILE "QUE'JE2"
TO THE LAST. IN THE SURF TABLE FOR A TEk"IhAL TIERE IS A
POINTER TO THE NEXT REOLEST IN THE TSS-LiBRAMY QUEUE. WHEN
THE POINTER IS NEGATIVE, TSS-LIBRARY ?-,!S RiACHEC THE END OF
THE QUEUE AND PROCEEOS TC REPROCESS THE QUEUE PROM TtIC
BEGINNING TILL ALL REQUESTS HAVE BEEN SATISFIED. WHEN ALL
REQUESTS HAVE BEEN SATISFIED, TSS-LIORARY WILL wAIT UNTIL
IMON GIVES IT MORE WORK.

LIBRARY MANAGEMENT ALGORITHMS, NOVEMBER 7t 1969 46

THE NUMBER OF SERVICES UHTSS OFFERS IS LIMITED. IN

CROER TO UTILIZE THE FULL CAPABILITY OF THE OPERATING
SYSTEM, UHTSS PROVIDES A METHOD OF SUBMITTING JOBS TO THE
BATCH PROCESSOR VIA THE TERMINALS.

THE HASP SYS T EM PROVIDES I.N INTERNAL READER WHICH IS
ALLOCATED USING A 00 CARD ESSENTIALLY IT IS A PSUEDO CARD
READER BEHAVING TO hASP A4 AN ORDINARY CARD READER.

THE HASP CCMMAND ROUTES THE CARGS TO THE INTERNAL
kEAOER. THESE CARDS HOWEVER MUST HAVE THE PRrPER JCL CARDS
(jUST LIKE A NORMAL JOB SUBMITTED TO THE CARD REAOERE. BOTH
THE PRINT AND PUNCH COMMANDS GENERATE THE PROPER JCL FOR THE
USER USING THE SYSTEM DEFAULTS. NOTE THAT ALL 4/*t CAkDS ARE
REPLACED BY $** CARDS.

,UING ThE BATCH VERSION OF THE TSS_-IBRARY PRjGRA4

ALL CCMM A J FOR THE SYSTEM ARE PUNCHED ON CARDS IN
fx'A4tTLY THE SAME FORMAT AS ON THE CONSOLES. ALL REPLIES BY
THE SYSTEM ARE PRINTED OUT. DISPLAY IS THE SAME AS PRINT.
THE FORMAT OF THE 'OSTING IS THE TERMINAL NUMBER (ALWAYS 0),
THE CURRENi DATA SET NAME (MAY BE BLANK)* THE CURRENT TIME
OF DAY IN RINARY IN TERMS OF HUNDREDTHS OF A SECOND, AND A
MESSAGE. THE MESSAGE MAY BE THE COMMAND TO BE EXECUTED, THE
RESPONSE OF THE SYSTEM (*:.....), A STATUS REPORT (SELECT:
DATA SET SELECTED PROPEP-.Yit AN ERROP MESSAGE (CREATF!
DUPLICATE NAME3, OR FINALLY THE REQUEST SATISFIED
MESSAGE WITH THE CURRENT I/0 COUNT.

NOTE: ONLY LOMMANOS TO THE LIBRARY PROGRAM ARE
RECOGNIZED. YOU CANNOT EXECUTE A PROGRAM BUT YOU MAY HASP A
DATA SET. THE BATCH VERSION WILL TERMINATE ON ANY ERROR
EXCEPT #ND OF DATA SET.

NOTE: THE COST OF USING THE BATCH VERSION IS COPUTEC
AS A NORMAL BACKGROUND JOB. THE UHTSS/2 ACCOUNTING SCHEME
DOES NOT APPLY. DEPENDING UPON THE APPLICATION THE REGION
SIZE AND I/O COUNTS MAY BE SIGNIFICANT.

FIRSI L!NE PRINTED BY THE BATCH VERSION INFORMS YOU AS
TO THE SIZE OF THE DYNAMIC AREA AVAILABLE TO DAOL/LOAD. IT
MUST BE LARGER THAN YOUR XPL FORMATTED DATA SET. CTHERWISE
THE PROGRAM TERMINATES. THIS DYNAMIC AREA IS A FUNCTION OF
THE REGION SIZE CF THE STEP. THE 9ATCH VERSION TAKES ABOUT
90K TO EXECUTE. IF YOU WISH TO LOAD/LAOL, YOU MUST ADD THE
APPROPRIATE AMOUNT TO 90K.

LIBRARY MANAGEMENT ALGORITHMS, NOVEMBER 7, 1969 47

TO CREATE A LC&A. LE DATA SET ON THE rIME SHARING FILE,
THE FOLLOWING CO hA!'US HUST BE EXECUTED:

1) HI 0#06#01 'PROGRAMMER NAME'
(NOiE THAT ##9### IS YOU JOB/ACCOUNT
NUMBER. AT THE MOMENT THE SYSTEMS
JOB/ACCOUNT NUMBER IS 00000000)

2) CREATE 'DATA SET ,tAME'
T.E DATA SET NAME IS THE NAME OF THE
PROGRAM YOU WANT TO EXECUTE.

3) DAOL 'DAIA SET NAME'
YOUR LOADABLE DATA SET MUST BE IN XPL
FORM ON INPUTZ. THE DOCARO MUST REDEFINE
THE DATA SET TO BE
DCB= (RECFM=FBLRECL=80BLKSIZE=7200)

NOTE: THE AF ROPRIATE MESSAGES WILL INFORM YOU OF THE
COMPLETION OF EACH REQUEST AND THE PROPER EXECUTION OF EACH
REQUEST.

XPL IMPLEMENTATION, NOVEMBER 7t 1969 48

SOURCE LAYOUTS

TMAN/L BRARY SpU cijxjZ

REALTHNG -----------
I I

$*$**$ MONITOR $$*$*$*$$$* I
I * CALL SEABASS *

t I

I $$$$$$ SEABASS $$$$$*$$$$*
I * IDENTIFY LIBRARY * |

* ATTACH LIBRARY $

- - ----- ------------------ --II I

.... SURF AREA --------------------I I

.---- LIBRARY PROGRAM--------------I 1
I *************************

* $ DATA AREA * I
I ****$***$$****$*$$$$*$**** I

I $ PROGRAM AREA *

I I
-------------------------------- S

.---- TMON PROGRAM----------------
I I
! CALL MONITOR (PARAMETERS); I
I I
-------------------------------- S

.---- MAIN PROGRAM ----------------I I
I CALL TMON; I
I i

THE DIAGRAM DETAILS THE PROGRAM STRUCTURE OF

TMCN/LIBRARY. THE BEAL.- , kai IS A LOAD MODULE OF ASSEMBLY

PROGRAMS. THE REST ARE WRITTEN IN XPL. THE SURF AREA IS A

COLLECTION OF DECLARATIONS. SIMILARLY THE DATA AREA OF THE

LIBRARY PROGRAM IS JUST DECLARATIONS. BOTH I.,b AND LIARAj&-
ARE INTERNAL PROCEDURES TO THE MAIN PROGRAM WITH THE SURF

AREA GLOBAL TO ALL THREE PROGRAMS.

XPL IMPLEMENTATION# NOVEMBER 7, 1969 49

IM L.IBRARY %OURCE LAYOUT

THE PROCESS OF VITALIZING THE LIBRARY PROGRAM HAS THE
FOLLOWING STEPS:

A) THE MAIN PROGRAM CALLS TMON.

8) AFTER TMON INITIALIZES HIS AREASs HE CALLS THE
MONITOR AND ALSO PASSES A PARAMETER LIST
(ONE SUCH PARAMETER IS THE ADDRESS OF
TSSULI BRARY) .

C) THE MONITOR (AN ASSEMBLY PROGRAM) CALL SEABASS (ALSO
IN ASSEMBLY$.

0) SEABASS PROCEEDS TO "IDENTIFY" LIBRARY AND
NATTACHESN THE PROGRAM. THIS PROCESS
MAKES LIBRARY KNOWN TO OS/MVT AS A YASK
AND EXECUTES IT AS SUCH.

E) EVENTUALLY LIBRARY IS EXECUTED AS A TASK AND SPRINGS
TO LIFE.

XPL IMPLEMENTATION, NOVEMBER 7 1969 50

: ..jhjREA SOURCE LAYOUT

- SURF AREA-------------------

* LITERALS *

• ECO AREA

QUEUE AREA*

I SURF AREA *

USNOE AREA

----- ----- ---- ----- ----- ----

I I

THE SURF AREA COSIT OFITRLtEB~ UUS U

ANDI TH OSNODE AREA* THS AAEEENSAETEOL
ILBL EURDFRCOMNCTO EWE *O AN LIBAY

XPL IMPLEMENTATION, NOVEMBER 7, 1969 51

SUEF AUE SOUALA101

THE LITERALS ENABLE THE SYSTEM PROGRAMS TO REFER TO
ELEMENTS OF SURF AND DSNODE IN A STRAIGHT-FORWARD MANNER. IT
PARALLELS THE USE OF OSECTS OF ASSEMBLER LANGUAGE OR
PREPROCESSOR STATEMENTS OF PL/l. NOTE THAT THE OBJECT CODE
IS NOT OPTIMIZED BY THE USE OF SUCH MACROS.

THE ECBS PROVIDE SYNCHRONIZATION OF TASKS (NAMELY TMONt
LIBRARY, AND IOCONTRL). IN TIME THE NAMING CONVENTION WILL
BE REGULARIZED Ta REFLECT PROGRAMS, NOT PROGRAMMERS.

THERE ARE THREE QUFUES IN THE OVERALL SYSTEM. TMON
MAINTAINS EACH ONE FOR THE JBSIDIARY TASKS, IOCONTRL, SMON,
AND LIBRARY. THESE QUEUES ARE JUST THE HEAD AND TAIL
POINTERS TO SURF BLOCKS WHICH ARE LINKED IN THE APPROPRIATE
MANNER.

SURF, THE SYSTEM USER'S FILE IS AN ARRAY OF CONTROL
BLOCKS. EACH TERMINAL IS ASSIGNED A BLOCK WHICH CONTAINS ALL
THE PERTINENT I..FORMATION TO PROVIDE SERVICE TO THAT
TERMINAL. THE SIZE HAS BEEN DECLARED TO BE 500 WORDS.
HOWEVER THERE ARE CURRENTLY ONLY 6 TERMINALS DEFINED WITH 65
WORDS PER BLOCK. THUS SOME AREA OF CORE IS UNUSED. FROM AN
AESTHETIC POINT OF VIEW, SURF BLOCKS SHOULD BE DYNAMIC* LIKE
MAIN STORAGE TO HANDLE TRANSIENT TERMINALS.

ON THE OTHER HAND, OSNODE IS MORE DYNAMIC. PRESENTLY IT
CAN HANDLE 40 DATA SET NODES(A OSNODE IS 20 WORDS AND THE
AREA IS 800 WORDS). SURF CONTAINS POINTERS TO THE OSNODES
(ACTUALLY ONLY INDICES). THERE IS A STACK
ALLOCATION/COLLECTION MECHANISM THAT MANAGES THIS AREA.

XPL IMPLEMtNIATIONe NOVEMBER 7, 1969 52

LIBRARY QATA AREA .- ,UJ&, J

--- DATA AREA--

***** GLOBALS ************
I * . o..o....e.•*.*o *

* . INITIAL • *
* * VARIABLES * I

I * .*..**o******.* *

* * MAPPING * *
* . ARRAYS * *

I * .***......***** * * I

*** TRANSIENT AREA*
I * * oo o*o~o o • * I

I * * * *

* . BUFF * *

I * *o• o oo • o *

I ************************** I

***** RESIDENT AREA ******

I * * *eo O OO • ~ o *

* * TABLE * *

I ** *•ooo•ooo *

* . GLOBALS • *

PADDING **

.* FREE .

I•. IMAGE *

THERE ARE FOUR MAJOR GLOBAL AREAS WITHIN THE LIBRARY

PROGRAM. THE FIRST GLOBAL AREA CONSISTS OF VARIABLES WITH

INITIAL VALUES AND A SET CF NAPPING ARRAYS. IN FACT IF THERE

WERE MORE MACRO SPACE IN THE XPL COMPILER, MOST OF THE

VARIABLES WOULD BE LITERALS. THE 4APPING ARRAYS CONTAIN

STRUCTURAL INFORMATION REGARDING EITHER DISK BUFFER AREAS

(eUFF OR TABLE BUT NOT BOTH).

XPL IMPLEMENTATION, NOVEMBER 7, 1969 53

L18RA AAREA SOURCE LAYOUT

THE SECOND GLOBAL AREA IS A TRANSIENT AREAt BUFF, FOR
THE DISK OPERATIONS. CURRENTLY IT IS 3S24 BYTES EVEN THOUGH
THE RECORD SIZE IS 3520. THE EXTRA FOUR BYTES ARE FOR KICKS*

THE LAST TWO GLOBAL AREAS ARE OVERLAPPED. THE RESIDENT
AREAt "ABLE9 IS INITIALIZED WITH THE CURRENT DTOC. AFTER
INITIALIZATION THE AREA IS NEVER READ INTO AGAIN.
OCCASIONALLY THE OTOC IS WRITTEN OUTt BUT NEVER READ IN
THEREAFTER. CURRENTLY THE DTOC CONTAINS LESS THAN 400 WORDS
BUT THE BUFFER AREA IS 8eD W4OROS. IN ORDER TO UTILIZE THIS
SPACE, THE LAST GLOBAL AREA IS OVERLAYED ON TO THE FULL
TABLE BUFFER. THIS AREA CONTAINS WORK AREASt PADDING AND
FREE-IMAGE.

THE WORK AREA CANNOT BE INITIALIZED SINCE IT IS OVERLAY
DURING INITIALIZATION. PADDING IS AN AREA TO INSURE THAT THE
DISK RECORD DOES NOT OVERRUN SOME OTHER AREA. FREE-IMAGE IS
THE DISK IMAGE OF A FREE LOGICAL TRACK (IT IS CORE RESIDENT
TO REDUCE DISK READS).

XVL IMPLLMLNIAIIGNv NUVEMdER 79 1969 54

6PR AM A1EA

* *

$ SERVICE ANO I
* MANAGEMENT *

I ROUTINES

$ LIBRARY *

REQUEST DRIVERS *

I * MAIN PROGRAM *

I $ LIBRARY DRIVER

THE SUBROUTINE STRUCTURE IS SIMPLE SINCE XPL REQUIRES
THAT PROCEDURES MUST EXIST BEFORE THEY ARE QEFERENCED. THERE
ARE VERY FEW INTERNAL PROCEDURES. MOST OF THE ROUTINES ARE
CLUSTERED TO REFLECT SIMILAR FUNCTIONS; ,OWEVERs THE
ORDE. ING IS MAINLY HISTORICAL.

XPL IMPLEMENIATION, NOVEMBER T, 1969 55

SUBRGLTINE COMPONENTS

ihJaIALL.A1i

THERE ARE THREE PHASES FOR INITIALIZATION. THE FIRST
PHASE IS A ONE-SHOT EXECUTION, I.E. IT OCCURS ONLY AT THE
START OF THE PROGRAM ANO IS NEVER EXECUTED AGAIN. THE OTHER
PHASES OCCUR DURING EVERY REQUEST FOR SERVICE.

AT THE FIRST CALL TO THE LIBRARY SYSTEht THE ROUTINE
INITIALIZE IS CALLED TO FIND THE CURRENT OTOC AND READ IT
INTO THE CORE TABLE, SUPPLY THE PROPER ADDRESS REQUIRED
T!;!UGHOUT THE PROGRAMt AND TO SAVE THE FREE LOGICAL TRACK
IMAGE IN CORE FOR LATER USE, IT ALSO CREATES A FREE DSNODE
LIST AND ALLOCATES A NODE TO EACH SURF TERMINAL.

AT EVERY REQUEST A LIST OF ADDRESSES MUST BE
CALCULATED. ONE PHASE INITIALIZES POINTERS THAT DEPEND UPON
"TERMAD" FOR SURF FIELDS. THE OTHER Ph"SE INITIALIZES
POINTERS FOR THE SNODES kHICH DEPEND UPON NOSPNTRN.

IN ORDER TO SAVE CORE STORAGE, VARIABLES NOT USED
OURING INITIALIZATION OR VARIABLES NOT INITIALIZED APE
CECLARED AFTER usABLE". "TABLE" IS T4E BUFFER AREA FOR THE
OTOC, WHICH MUST BE 3520 BYTES. BUT ONLY ABOUT 1600 BYTES I
USED FOR THE OTOC WHICH IS READ IN ONLY ONCE DURING
INITIALIZATION, THE OTHER 1920 BYTES CAN BE EFFECTIVELY USED
FOR OTHER VARIABLES. NOTE THAT "PADDING" IS AN ARRAY THAT
ASSURES THAT THE AGGREGATE SIZE OF *TABLE*# THE OTHER
VARIABLES, AND "PADDING" IS GREATER ThAN 3520.

XPL IMPLEMENTATION, NOVEMBER 7, 1969 56

THE MAJOR ROUTINE THAT DEALS WItH COMMAND PROCESSING IS
"PARSING" WHICH DEALS WITH A COMMAND SYNTAX THAT FOLLOWS:

<COMMAND> := <COMMAND LIST> I <COMMAND LIST> ;

<COMMAND LIST> := <COMMAND HEAD>

<COMMAND LIST> <COMMAND LIST> <DELIMITER)

<COMMAND OPTION>

<CCMMANO HEAD> :z <CCMMAND OPTION>

<COMMAND HEAD> <NULL>

<COMMAND OPTION> :z <POSITIONAL OPTION>

<COMMAND OPTION> :- <KEYWORD OPTION>

<POSITIONAL OPTION> := <OPTION>

<KEYWORD OPTION> :x <KEYWORD> = <OPTION>

<DELIMITER> := <BLANK> I <COMMA>

<OPTION> <STRING OF CHARACTERS WITHOUT BLANKS>

<OPTION> := * <STRING OF CHARACTERS WITH BLANKS> '

P.S. THE STANDARD PROBLEM OF APOSTRCPHES OCCUR. TO

REPRESENT THEM USE TWO SUCCESSIVE APOSTROPHES, I.E. ,,.

IT IS IMPORTANT TO NOTE THAT IN THE COMMAND PROCESSING,
THE FIRST CALL TO "PARSING" IS A DUMMY BECAUSE "TMON" HAS
ALREADY DECODED THE COMMAND. THE FUNCTION OF THE FIRST CALL
IS TO SET UP THE PROPER NIMAGEN.

THE "PARSING" ROUTINE IS THE MOST IMPORTANT ROUTINE
BECAUSE IT DOES ALL THE ANALYZING OF THE COMMANO SYNTAX. THE
ROUTINE REQUIRES THAT THE GL68AL VARIABLE "IMAGE" BE FILLED
WITh THE COMMAND STRING, "BJFFER". AT EACH CALL TO
"PARSINGN, TWO ANSWERS ARE RETURNEC VIA GL73ALS "nEYWOR0"
AND OCPTIONa. THE ROUTINE IS CALLEC AS MANY TIMES AS
REQUIRED TC PROCESS ALL TiE CPTIONS. NCTL THAT THE COMMAND
ITSELF MUST BE VIEWED AS AN OPTiCN. ALSC THE "IMAGE" IS
REPLACED WITH THE REMAINDER OF THE COMMAND STRING. SO A
COMMAND THAT hAS TWO OPTIGNS WILL HAVE 3 CALLS TO "PARSER".
FINALLY THE ROUTINE IS A FUNCTIG& TO INCICATE END OF
PROCESSING, I.E. EITHER THE SEMi-COLOk AAS ENCCUNTERED OR
COLUMN 80. THE RETURN IS FALSE FOk TrE END OF PROCESSING
SIGNAL.

Best Available Cop7

XPL IMPLEMENTATION, NOVEMBER 7, 1969 57

RECORDa~ PSi U.GklN

THE TWO METHODS OF RECORD POSITIONING ARE RELATIVE AND

ABSOLUTE. BOTH METHODS MUST DEAL WITH THE STRUCTURE OF THE

DATA SET UNDER UHISS.

ABSOLUTE POSITIONING REQUIRES COUNTING THE RECORDS IN

THE DATA SET STARTING FROM THE BEGINNING. SINCE NEITHER THE

UHTSS TABLES NOR THE LIBRARY STRUCTURE HAS THE CuRRENT
RECOmtD NUMBER* THE PRIMARY LT MUST BE ACCESSED TO

SEQUENTIALLY CGUNT THE NUMBER OF RECORDS IN THE DATA SET.

THIS INVOLVES ACCESSING EACH SECONDARY LT FOR THE

INFORMATION. EACH LT HAS THE NUMBER OF RECORDS IN IT BUT

THERE IS NO FIELD IN THE PLIS ASSOCIATED LT BLOCK FOR THIS

NUMBER (IT WOJLD DOUBLE THE NUMBER OF ACCESSES TO THE DISK

IN ORDER TO KEEP THE FILES UPDATED).

THE RELATIVE METHOD USES THE RECORD KEY TC FIND THE

POSITION OF THE RECORD. THF KEY IS SEARCHED THROUGH THE

ASSOCIATED LT TABLES TO FIND TAE PROPER SEC9NOARY LT. THEN

THAT TRACK IS READ IN AND THE KEY IS AGAIN USED TO FIND ITS

POSITION WITHIN THE TRACK.

"COPARING BOTH METHOCS, THE RELATIVE METHOD IS SlJPERIR

TO THE ABSOLUTE METHOD. THE FORMER METHOD REQUIRES GNLY TvO

ACCESSES WHILE THE LATTER METHOD REQUIRES AT LEAST TWO AND

POSSIBLY MANY MORE IF THE RECORD IS NEAR THE ENC OF A LARGE

DATA SET. THE TRADE-OFFS ARE SIMILAR TO SEQUENTIAL

PROCESSING VERSUS RANDOM PROCESSING.

XPL lPPLEhETATION* NOVEMBER To 1969 58

THE MOST IMPORTANT ROUTINES TO THE LIBRARY SYSTEM ARE
THE BLOCK MANAGFMENT PROGRAMS. THESE PROCEOURES PROVIDE THE

NECESSARY TABLE LOOK-UP PROCEDURE AND THE VITAL BLOCK
UPGATING FUNCTIONS.

THE "MAP" ROUTINE PROVIDES A STRUCTURE MAPPING OF A
LCGICAL TRACK. FROM THE BLOCK INFORMA.aON WITHIN THE TRACK,
THE ROUTINE CALCULATES AND SAVES PERTINENT INFORMATION
REGARDING THE TRACK. THESE VALUES ARE CONTAINED THE GLOBALS
"ABLKN, THE RELATIVE ADDRESS OF EACH BLOCK WITHIN THE ARRAY
(EITHER "BUFF" OR "TABLE")# nASUBSet THE RELATIVE ADDRESS OF
THE SUB-BLOCKS, D#BLKSt THE NUMBER OF WORDS IN THE BLOCK,

U#OATAut NUMBER CF WORDS IN DATA AREA OF THE SUB-BLOCK,
NOKEYS", NUMBER OF WORDS IN THE KEY AREA, "#LOCK", NUMBER OF
WORDS IN THE LOCKOUT AREA, MSSUBSv NUMBER OF SUB-BLOCKS IN
THE BLOCK, AND DOTEXTt THE NUMBER OF WORDS IN THE TEXT
AREA.

WBDAM" PROVIDES THE INSERTION AND DELETION OF SUB-

BLOCKS IN BLOCKS 3 AND 4. IT ALSO PROVIDES RETRIEVAL OF SUB-
BLOCKS FROM THESE BLOCKS.

FINALLY, NISAMN SEARCHES THE DIRECTORY TABLES GIVEN A
KEY AND FINDS THE POSITION OF THE KEY WITHIN THE TABLE. THE
SEARCH IS STRICTLY SEQUENTIAL. IT RETURNS A FLAG TC INDICATE
THE KIND OF POSTION, I.E. LESS THAN A KEY, EQUAL TO A KEY,

BETWEEN TWO KEYS, OR OUTSIDE THE RANGE.

XPL IMP,, MENTATIONt NOVEMBER 7, 1969 59

.IkIG ONMUICATIONS

THE LIDRARY PROGRAMS COMMUNICATE WITH THE TERMINAL OR
THE MONITOR VIA POSTS AND WAITS. IHE "SYSTEM" ROUTINE
&NFORMS THE MONITOR THAT THE LIBRARY PROGRAM HAS CRASHEC,
THE "CONSOLE" PROGRAM COMMUNICATES WITH THE TERMINAL, THE
"POST* ROUTINE IS THE BASIC TRANSMITTFR TO THE MON!TORv AND
THE "WAIT" PROGRAM TELLS THE MO 'TOR THAT THE LIBRARY
PROGRAMS IS FINISHED.

THE SURF BUFFER IS STORED IN A WORK AREA. ALL
MANIPULATION WITH THE BUFFER IS DONE WITH RESPECT TO THE
WORK AREA. WHEN THE RESULTS ARE TO BE PASSED BACK VIA THE
SURF BUFFER, THE LIBRARY MUST WAIT TILL THE BUFFER IS FREE.
THEN THE BUFFER IS STUFFED FROM THE WORK AREA. THIS OCCURS
IN 2 ROUTINES: CONSOLE AND LINK.,

IN ORDER TO MOVE DATA FROM ONE PROTECT REGION INTO
ANOTHER, UHTSS HAS AN SVC WHICH WILL PUT THE PROGRAM IN ZERO
PROTECT KEY. THE ROUTINES INVOLVED ARE:

GETINTOPROTEC _KEYZERO.

GETOUTOFPROTECTKEYZERO.

XPL IMPLEMENTATION# NOVEMBER T, 1969 60

.10 IOSYNCRAC IFES

MOST OF THE IDOSYNCRACIES ARE NOT MAJOR ROADBLOCKS BUT
AT TIMES CONSTITUTE AN UNNECESSARY DIGRESSION IN PROGRAMMING
TO SOLVE THEM. MOST OF THE SOLUTIONS HAVE BEEN DONE USING
"INLINE" COOING.

THE XPL IMPLEMENTATION OF COREWORO REQUIRES A WORD
k.DRESS WHILE NOWHERE WITHIN THE STRUCTURE OF XPL IS THERE
ANY FACILITY FOR OBTAINNING A WORD ADDRESS DIRECTLY. AS A
RESULT OF THIS- "MAPPER" PROVIDES BYTE ADDRESSING FOR WORD
ARRAYS.

STRINGS

SkRINGS ARE PASSED AS STRING DESCRIPTORS WITH AN 8 BIT
LENGTH AND A 24 BIT ADDRESS FIELD. THERE ARE ENTRIES WITHIN
THE UHTSS TABLE THAT SHOULD BE TREATED AS STRINGS BUT
BECAUSE THERE ARE NO EQUIVALENCE OR DEFINED STATEMENTS, WE
MUST PERFORM THE MAPPINn OURSELVES. THE ROUTINE "STRING" H4S
A PSUEDO-DESCKIPTOR AS AN ARGUMENT AND RETURNS THIS
DESCRIPTOR AS THE PROPER VALUE FOR A CHARACTER PROCEDURE.
THUS USING "STRING" AS A FUNCTION WITH A WORD THAT HAS THE
HIGH-ORDER BYTE SET TO SOME LENGTH AND THE LOW-ORDER 3 BYTES
TO SOME ADDRESS# WE CAN USE ELEMENTS OF AN ARRAY AS AN XPL
CHARACTER STRING.

SINCE DATA FIELDS MUST BE PHYSICALLY MOVEC, THE XPL
CONVENTIONS OF SETTING DESCRIPTORS EQUAL IS UNSATISFACTORY.
"MCVEBYTES" MOVES BLOCKS OF UP TO 256 BYTES FROM NSOURCE" TO
"TARGET". BOTH SOURCE OR TARGET ARE CORE ADDRESSES WHICH ARE
USUALLY STRING DESCRIPTORS. "MOVER" CALLS "eMOVEBYTES" BUT
MOVES IN TERMS OF WORDS.

THERE IS PERHAPS A BUG WITHIN XPL. THERE SEEMS TO BE
SOME SCRT OF FAILURE TO CONCATENATE PROPERLY WHEN THE FREE
STRING AREA IS OVERFLOWED AND COMPACTIrICATION MUST OCCUR.
FOR THIS REASON THERE WILL BE NO CONCATENATION WITHIN THE
PROGRAMS.

L.LRAL

SINCE XPL LACKS THE ABILITY TO BRANCH TO ROUTINES WHCSE
ADDRESSES WERE PASSED AS PARAMETERS@ "MASS" WAS DESIGNED TO
PERFGRM A SIMPLE BALR.

XPL IMPL MENTATION9 NOVEMBER I, 1969 61

SUBROUTINE ANATOMY

THIS SECTION DESCRIBES EACH SUBROUTINE USED IN THE
LIBRARY PROGRAM. EACH DESCRIPTION INCLUDES A NARRATIVE ON
THE FUNCTIONS AND QUIRKS, A LIST OF PROCEDURES IT INVOKFS
AND FINALLY A LIST OF GLOBALS IT REFERENCES. T::Z ORDES OF
THE SUBROUTINES IS THE ORDER REQURIED BY XPL A:ND MY OWN
PERSONAL QUIRK.

i[&LlIN

DESCRIPTIVE NOTES:

TAKES A PSEUDO-DESCRIPTOR AND RETURNS IT AS AN XPL
DESCRIPTOR. A PSEUDO-DESCRIPTOR IS A WORD WITH THE
HIGH ORDER BYTE BEING THE LENGTH OF THE STRING

MINUS I (NULL STRINGS ARE REFRESENTFO BY A ZERO
WORD). THE LOW ORDER 3 BYTES IS THE MACHINE
ADDRESS.

MAPBE

DESCRIPTIVE NOTES:
PERFORMS THE SAME FUNCTION AS COREWORD. DIFFERENCE
IS THAT IT USES AN ADDRESS THAT IS A PARAMETER TO A
SUBROUTINE.

INVOKED PROCEDURES:

INLINE

LAf

DESCRIPTIVE NOTES:
BLANKS UUT A STRING. THE DESCRIPTOR MUST POINT TO
AN AREA BELOW FREEBASE.

INVOKED PROCEDURES:

INLINE

DESCRIPTIVE NOTES:
MOVES UP Tn 256 BYTES AROUND. THE REASON FOR THE
BCTR 3,0 IS THAT LIMIIED IS THE NUMBER OF BYTES TO

BE MOVED, BUT THE MACHINE REQUIRES THAT THE LENGTH
BE THE LENGTH OF THE STRING MINUS ONE.

INVOKED PROCEDURES:
INLINE

DESCRIPTIVE NOTES:
MOVES BLOCKS OF WORDS ABOUT. TRIES TO OPlIMIZE BY

XPL IMPLEMENTATION, NOVEMBER 1, 1969 62

MOVING BLOCKS OF 256 BYTES AT A TIME.

INVOKED PROCEDURES:
MOVEBYTES

DESCRIPTIVE NOTES:
PUTS LEADING BLANKS INTO A STRING. THE TARGET
STRING MijST BE BELOW FREEBASE.

INVOKED PROCEDURES:
LENGTH, MOVEBYTES, STRING, ZAP

DESCRIPTIVE NOTES!
PUTS TRAILING BLANKS INTO A STRING. THE TARGET
STRING MiST bE BELOW FREEBASE.

INVOKED PROCEDURES:
LENGTH: MCVEBYTES, S(RING, ZAP

OFSCRIPTIVF NOTES:
CHARACTER FUNCTION

PERFORMS BINARY TO HEXADECIMAL CHARACTER STRING

CONVERSION FOR OUTPUTTING.

INVOKEO PROCEDURES:

SUBSTR

.BACKNOVE

DESCRIPTIVE NOTES:
MAKES ROOM FnR A BLOCK BY MOV!NG THE BLOCKS AFTER

IT A BLOCK UP.

INVOKED PROCEDURES:
MOVE

DESCRIPTIVE NOTES:
LOG THE TIME, TERMINAL, GAIA SET NAME, AND MESSAGE,
ONLY IF SYSTEM TRACE IS LESS THAN I.

INVOKED PROCEDURES:
STRING, SUBSTR

REFERENCED GLOBALS:
SYSTEM TRACE

XPL IMPLEMENFATIONe NOVEMBER 7, 1969 63

lag

DESCRIPTIVE NOTES:
WRITE TO THE OS SYSTEM TYPEWRITER/OPERATOR, INLINES
THE SVC* MAKE SURE TO SAVE GENERAL REGISTER 15 ELSE
XPL WILL BE SCAEWED UP.

INVOKED PROCEDURES:
INLINE

faET INTC PROTECT._KgYZERO

DESCRIPTIVE NOTES:
PUTS THL PROGRAM IN PROTECT KEY LERO BY ISSUING A
SPECIAL SVC.

INVOKED PROCEDURES:
INLINE

G Ef-QUT OF PR lf. KY ER

DESCRIPTIVE NOTES:
GETS THE PROGRAM OUT OF PROTECT KEY LEHOi ISSUES A
SPECIAL SVC.

INVOKED PROCEDURES:
INLINE

DESCRIPTIVE NOTES:
SIGNAL THE COMPLETION OF AN EVENT.

INVOKED PROCEDURES.
INLINE

DESCRIPTIVE NOTES:
AWAIT THE COMPLETION OF ThiE EVENT.

INVOKED PROCEDURES;
INLINE

DESCRIPTIVE NOTES:
TELL fMCh THAI I4M GGING TU l'sL THL bUkf BU,:rcil.
WAIT TILL ITOS OK.

INVOKED PROCLOURES:
POST, WAIT

REFERENCED GLOBALS:
CMONQECBv IOSTAT, ORIGIN, fiKMAC

XPL IMPLEMENTATION, NOVEMBER 7 1969 64

DESCRIPTIVE NOTES:
ASK TMON TO GIVE ME INPUTS WITHOUT EXAMINING THE
CONTENTS OF THE BUFFER. WE ARE NO LONGER IN COMMAND
MODE BUT IN MODE 52 (AT THE MOMENT INSERT MODE).

INVOKED PROCEDURES:
POST

REFERENCED GLOBALS:
COMPLETED STATUS TERMAD

DESCRIPTIVE NOTES:
WRITE TO THE TERMINAL. NOTE THAT WE MUST WAIT UNTIL
THE SURF BUFFER IS FREE FOR USAGE, IF THE
SUBROUTINE NAME 'Xe HAS AN 0*0 AS THE FIRST
CHARACTER, THEN THE MESSAGE GOES TO THE ACTIVE-LINE
(OF THE 22601S). OTHERWISE IT GOES TO THE
FORMATTING LINE. NOTE THAT THE SURF BUFR IS STUFFED
WITH THE CONTENTS OF THE WORKING BUFFER.

inVuKE& rKUrijAOEEft-.
BYTE, LENGTH, LOGGING* MOVE, MOVEBYTES, POS~t
TRAILING# WAIT, WAITFORBUFFER9 ZAP

REFERENCED GLOBALS:
APAGE, BUFFER, BUFRv TERMAD

DESCRIPTIVE NOTES:
KILL MY PART OF THF PROGRAM* WE HAVE A DISASTROUS
ERROR. FCV t,0cr!G,

INVOKED PROCEDURES:
OPERATORs WAIT

REFERENCED GLOBALS:
SYSTEM-TRACE

LEBRARY CRASb

DESCRIPTIVE NOTES:
THE COMMAND WAS NCT iN THE BUFFER. KILL MY PROGRAM.

INVOKED PROCEDURES:
SYSTEM

fjONVERT BINARY

DESCRIPTIVE NOTES:
LOGICAL FUNCTION

XPL IMPLEMENTATION, NOVEMBER 7, 1969 65

CONVERT A CHARACTER STRING TO A BINARY NUMBER,
INCLUDING NEGATIVE NUMBERS. IF THE RETURN IS TRUE,
THEN THERE IS A CONVERSION ERROR. OTHERWISE THE
ANSWER IS RETURNED IN 'VALUE'.

INVOKED PROCEDURES:
8YTEt LENGTH, OPERATOR

REFERENCED GLOBALS:
VALUE

DESCRIPTIVE NOTES:

FIXED FUNCTION

PERFORMS A SEARCH OF A STRING FOR A GIVEN SUBSTRING
WITH PARAMETERS TO TELL WHERE TO START AND STOP
SEARCHING AND HOW TO INCREMENT THE SEARCH.

INVOKED PROCEDURES:

LENGTH, SUBSTR

IhQ

DESCRIPTIVE NOTES:
FIXED FUNCTION

SAME AS "INDEX" FUNCTION OF PL/I. CAN'T USE "INDEX"

BECAUSE IT'S A LITERAL.

INVOKED PROCEDURES:
INOEX2, LENGTH

DESCRIPTIVE NOTES:
IOGICAL FUNCTION

TAKES A STRING AND RETURNS THE KEYWOkD/CPTION USING
THE SYNTAX DEFINED FOR THE COMMANDS. HANDLES

APOSTROPHES OK. THE PARAMETER DELIMITER IS A BLANK

OR COMMA. THE COMMAND DELIMITER IS A SEMI-COLCN.
CONTINUING MAY NOT BE RESET PROPERLY. TtAT IS WHY

IN TSS-LIBRARY ON THE FIRST CALL, IT IS RESET.

*WARNINGS PARSING DESTROYS IMAGE IF LITERAL STRINGS
ARE USEC. THE TECHNIQUE USING PARSING MAKES IMAGE
BUFFER. NOTE THAI BUFFER IS AN ARRAY.

INVOKED PROCEDURES:
BYTE, INDEXI, LENGTH OPERATCR, SUBSIR

REFERENCEC GLOBALS:

IMAGE, KEYWORD, OPTION, VALUE, CCNTINUING

XPL IPPLEMENTATIGN, KCVEMBER 7, 1969 66

DESCRIPTIVE NUTES:
ANALYZES EITHER BUFFERS AND FILL THE MAPPING ARRAYS
WITH THE APPROPRIATE VALUES.

INVOKED PROCEDURES:
MAPPER, SYSTEM

REFtRENCED GLOBALS:
0BLKS, ABLK* ASUBSs #SUBS, ODATAv #KEYSt #LOCK,
*TEXT, LURRENTBUFFER9 FREE-AREA

DESCRIPTIVE NOTES:
MANIPULATES SUBBLOCKS OF BLOCKS 3 OR 4. INSERTSt

DELETES* AND RETRIEVES. IF THE SUBBLOCKS IS OUT OF
RANGE, THE SUBBLOCKi IS RESET TO THE BCUNOARY
LIMIT.

INVOKED PROCEDURES:

BALKMOVE9 COREWOK, MAP, MOVE* OPERATOR

REFERENCED GLOBALS:

OTEXTt ASUBS, CURRENTBUFFER, FREEAREA, *BLKS,
#SUBS

OESLRIPTIVE NOTES:
FIXED FUNCTION

SEARCHES THROUGH A LIST OF KEYS TO SEE IF A GIVEN
KEY IS WITHIN A RANGE OF THEM. RETURNS FLAG AND
SUB#.

INVOKED PROCEDURES:
STRING, OPERATOR

REFERENCED GLOBALS:
OKEYS, GTEXT, ASUBSe #DATA# FLAG, SUBI CGNDCOOE

DESCRIPTIVE NOTES:
FIXED FUNCTION

TRIES TO FIND A FREt BIT GIVEN A FREE CYLINOER

BLOCK. CALCULATES THE APPROPRIATE LOGICAL TRACK
NUMBER. RETURNS ZERO OTHERWISE.

INVOKED PROCEDURES:
FREEBLK

-i-

XPL IMPLEMENTATION, NOVEMBER 7, 196,9 67

fk1 ti

DESCRIPTIVE NOTES:
FIXED FUNCTION

SEAkCHES THROUGH THE CORE TABLE'S BLOCK , FROM THE
CENtRAL CYLINDER. RETURNS THE LTS.

INVOKED PROCEDURES:

BOA, , FIND-BIT. MAP, SYSTEM

REFERENCED GLOBALS:
ATABLEt $SUBS ABUFF, REWRITE

U8tLB

DESCRIPTIVE NOTES:
FREES A LCGICAL TRACK BY RESETTING THE APPROPRIATE

BIT IN THE PROPER FREE CYLINDER BLOCK.

INVOKtD PROCEDURES:
BDAMP MAP

REFERENCED GLOBALS:
ATABLE# LTUt ABUFF, REWRITE

DESCRIPTIVE NOTES:
MAKE SURE THAT THE LTO IS WITHIN THE BGUNIS OF THE
DISK FILE.

INVOKED PROCEDURES:
SYSTEM

REFERENCED GLOBALS:

LASTTRACK!t LTO

DESCRIPTIVE NOTES:
DETERMINES IF THE OTUC SHOULD BE WR.TiEN. IF SO*
WRITES IT.

INVOKED PROCEDURES;
FILE# TRACK-CHECK

DESCRIPT!VE NOTES:
READS IN THE DESIRED LOGICAL TRACK. CHECKS FIRST TO

SEE IF if IS ALREADY IN CORE. IF IT IS JUST ACT AS
IF I WAS READ IN.

INVOKED PROCEDURES.

XPL IPPLEMENTArIIN* NOVEMBER 7, 1969 L8

Fli.E, MAP, RITEY

REFERENCEO GLOBALS:

L1ir IOCCUNT, BUFF* LASTLT#

DESCRIPTIVE NOTES:
READS IN THE TRACK AND TRIES TO GET THE HIGH AND
LOW KEYS (CANNOT BE DONE FOR LOADAKLE DATA SETS).

INVOKED PROCEDURES:
BOAMt MOVE, READY

REFERENCED GLOBALS:
#TEXT* LO HI

DESCRIPTIVE NOTES:
WRITES THE LOGICAL TRACK ONTO DISK.

INVOKED PROCEDURES:
FILE, RITEY* TRACKCHECK

REFEREACED GLOBALS:
LT# ABLKe BUFF, IOCOUNT, LASTLT#

DESCRIPTIVE NOTES:
OBTAINS A FREE OSNODE FOR A TERMINAL.

INVOKED PROCEDURES:
SYSTEM

REFERENCED GLOBALS:

DSNODE, OSPNTR, DSHEAD, DCalt DCB92 FREEHEAD, COUNT

DESCRIPTIVE NOTES:
FREES A DSNODE LIST AND PUTS EACH OSNODE BACK ON
THE FREE OSNODE LIST, EXCEPT THE LAST ONE. IT IS
ALWAYS ALLOCA I1 TO THE SURF TERMINAL.

REFERENCED GLOBALS:
DSNODEt OSHEADs CSPNTR, FRZEHEA39 COUNT

LL ULJU Zh

DESCRIPTIVE NOTES:
INITIALIZES DATA SET PARAMETER POINTERS.

REFERENCED GLOBALS:

XPL IMPLEMENTATION, NOVtMBER 7, 1969 69

DSNODE, FREEHEAD, DSPNTR, nSHEAC, L0, CURRENT, Hi,
STOPKEY9 CURRENT_.SNOOE

DESCRIPTIVE NOTES:
READ IN THE CURRENT DoaC, INITIALIZE PCINTERS, GET
THE DATE, SET UP THE FREE DSNOGE LIST AND ALLOCATE
ONE TO EACH TERMINAL. CALCULATE TODAY'S DATE (TRY
TO HANDLE LEAP YEAR, MIGHT NCT WORK).

INVOKED PROCEDURES:
ALLOCATEDSNODE, DATE, FILEt GETFILEv MAP9 MOVE,
STRING, SUBSTR, SYSTEM

REFERENCED GLOBALS:
ATABLE, APADDING, U ECOUNT, LASTTRACKE, #SUBS,
ABUFF, BUFFER, AFREE, APAGE, DATEEXP* DATENOW,
NEXT-KEY, DATELIMITI CATE-TODAY,
FREELOGICALTRACK9 LT0v FREEAPEA DSNODE, DSHEAD,
DSPNTR, NUM..TER'% EnfRYLENGTH

DESCRIPTIVE NOTES:
FREES THE LT AND WRITES A FREE LOGICAL TRACK OUT.

INVOKED PROCEDURES:
FAEETRK, MOVE, WRITEFiLE

REFERENCED GLOBALS:

ABUFF, AFREEIMAGE

LOSAT TABUL

DESCRIPTIVE NOTES:
FIXED FUNCTION

EXAMINES THE CORE TABLE FOR THE JOB/ACCOUNT NUMBER.

INVOKED PROCEDURES:
ISAM, MAP, MOVE, STRING

REFERENCED GLOBALS:
AJOB, APAGE, ATABLE9 FLAG

LDQLA _EAG

DESCRIPTIVE NOTES:
FIXED FUNCTION

EXAMINES THE DIRECTORY PAGE FOR THE JOB/ACCOUNT
NUMBER AND DSNAME.

XPL IMPLEMENTATION# NOVEMBER 7, 1969 70

INVOKED PROCEDURES:
BOAMt GETFILEt ISAMt MOVE, STRING

REFERENCED GLOBALS:

SUB0I LTv APAGEv AJOB, ADSET, FLAGo ABUFF

f-HATE LABEL A QLCJS

DESCRIPTIVE NOTES:
FILLS IN THE LABEL BLCCK WITH THE RIGHT STUFF,

INVGKED PROCEDURES:
MOVE

REFERENCED GLOBALS;

ABLK, BUFF* AJOB, AOSET, AUSERNAME9 LTN

fAlj _CATA -ET BLOCK

DESCRIPTIVE NOTES:
FILLS IN THE DATA 3ET BLOCK FOR THE DIRECTORY PAGE.

INVOKED PROCEDURES:
MOVE

REFERENCED GLOBALS:
LT#, APAGE, DATETODAY, DATEJLIMIT, AUSERNAME,
AJOBt ADSET

0 AT A SEj EUA&H

DESCRIPTIVE NOTES:
LOGICAL FUNCTION

CHECK TO SEE IF A DATA SET HAS ALREADY BEEN
SELECTED.

INVOKED PROCEDURES:
OPERATOR, STRING, SYSTEM

REFERENCED GLOBALS:
ADSET

DESCRIPTIVE NOTES:
LOGICAL FUNCTION

CHECK TO SEE IF THE TEXT SIZE IS LESS THAN OR EQUAL
TO 20 WORDS, SINCE INSERT AND DELETE UES SCRATCH
ARRAYS OF ONLY 20 WORDS.

INVOKED PROCEDURES:

OPERATOR

XPL IMPLEMENTATION, NOVEMBER 7, 1969 71

REFERENCED GLOBALS:
LTt *TEXT

DESCRIPTIVE NOTES:
LOGICAL FUNCTION

CHECK FOR KEYS OF LENGTH >6. FORCE BAD CCNDCODE IF
IT IS.

INVOKED PROCEDURES:
LENGTH, OPERATOR LLT REFERENCED GLOBALS:
CONDCODE

DESCRIPTIVE NOTES:
LOGICAL FUNCTION

CHECK TO SEE IF THE COMMAND HAS THE DATA SET NAME.
IF THE COMMAND COMES FROM ANYWHERE ELSE, ALLOCATE A
NEW DSNODE. PRIMARILY FOR SELECT AND CREATE.

INVOKED PROCEDURES:
ALLOCATE_.SNODEv INITIALIZEDSNODET LIBRARY CRASH,
OPERATOR, PARSINGt TRAILING

REFERENCED GLOBALS:
ORIGIN, IMAGE, BUFFER# OPTION, ADSET

RELATIVE POSITION

DESCRIPTIVE NOTES:
LOGICAL FUNCTION

TRIES TO POSITION THE FILE AT THE GIVEN KEY. SETS
FLAG AND SUB# PROPERLY. FIRST SEE IF IN CORE, IF
NOT READING THE PLTI. THEN GET THE APPROPRIATE
SECONDARY LOGICAL TRACK.

INVOKED PROCEDURES:
BOAMv GET-FILET ISAM, READFILE, SYSTEM

REFERENCED GLOBALS:
LTIt DC81, OC829 CURRENT, LO, Hit ABUFF, APAGE

AOLUIEl.L"h

le DESCRIPTIVE NOTES:

LOGICAL FUNCTION

GIVEN THE RECORD NUMBER# POSITIONS THE FILE THERE.
READ IN SEQUENCE EACH LII AND COUNT HOW MANY CARDS

XPL IMPLEMENTATIONt NOVEMBER 79 1969 72

THERE ARE UNTIL WE REACH THE APPROPRIATE NUMBER.

INVOKED PROCEDURES:
BDAMt MOVE, READ-FILE

REFERENCED GLOBALS:

LTO, DCB19 DCB2v #TEXT, SUBS, ASUBS, APADDING9
SUBS, RECORD0, APAGEt CURRENT

i.L . QbQ

DESCRIPTIVE NOTES:
LOGICAL FUNCTION

GET THE RECORD CORRESPONDING TO THE NEXT KEY.

SHOULD MOVE THE CURRENT KEY INTO THE NEXT KEY AND

AT THE END MOVE THE NEXT KEY INTO THE CURRENT KEY.

INVOKED PROCEDURES:
BOAM, GETFILE# ISAMv MOVE, READFILEv
RELATIVE-POSITION

REFERENCED GLOBALS:
NEXTKEYv CURRENT, MAXKEY9 ABUFFER, ISUBSt LT#t

DCB19 OCB29 ABUFF, SUBIt APAGE

LX"RABYSEL-ECI

DESCRIPTIVE NOTES:
SINGLE SERVICE REQUEST

AFTER INVESTIGATING THE OTOC AND PAGE, UPDATE THE

DATE SELECTED FIELD IN THE PAGE. CHECK IF HIS DATA
SET IS STILL LEGITIMATE. POSITION THE FILE AT THE
FIRST RECORD IF ITIS A CARD IMAGE DATA SET.

INVOKED PROCEDURES:

BDAMt GETFILEv INPUTERt LOOK-ATPAGEt
LOOKATTABLEv MOVE, OPERATOR, WRITE-FILE

REFERENCED GLOBALS:

LTDt DCB19 DCBZ, DATEEXP, OPTION, SUBS, APAGEt
DATENOW, DATETCOAY9 STEXTt ADSET, NODATASETt

COUNT, CONDCOOE

LJ."BL _RELAI

DESCRIPTIVE NOTES:
SINGLE SERVICE REQUEST

CREATES A DATA SET BLOCK AND UPDATES THL
APPROPRIATE PAGE. CHECK IF PAGE OVERFLOW CCCURS (NO

DYNAMIC MECHANISM YET). WRITES A FREE LOGICAL TRACK

IMAGE WITH THE PROPER FCRMAT.

XPL LiPPLEkENTATIONg NOVEMBER 7v 1969 ~ 73

INVCKED PROCEDURES'.
BDA~q, CREATE-..ATk..SETB.LOCK9 CREATE.LABEL..BLOCK9
GETIRK9 INPUTER, 100K_,AT..PAGEv LOOK-.AlrfABLE9 MAP,
MOVE, OPE.RATOR* WRITE-FILE

REFERENCED GL08ALS:
NO-jATA..SET, ADSET, CONDCODEv LT9, DCBI, DC82t
COUNT* Hit CURRENTv PAGE, A...FREEJMAGEs ABUFFt
OBLKSt #TEXT

DESCRIPTIVE NOTES:
MULTI-SERVICE REQUEST.

SCRATCH ALL THE LOGICAL TRACKS ASSOCIATED WITH THE
DATA SET. THE PAGE DATA SET BLOCK IS WIPED OUV
FIRST. ItIE PIT IS DONE THE LAST.

INVOKED PROCEDURES:
BOAMf GET-F.ILE9 INPUTER, LOOK-.AT-.PAGEY
LOOK-.AT-.TABLEt MOVE, OPERATOR, REINITIALIZE,
WRITE..FILE

REFERENCED GLOBALS:
COUNT, OCB19 DCB29 PAGE, ITI, OSUBSt APACCING,
ADSETv NO-OATA-.SET, CONOCODE

DESCRiPTIVE NOTES:
BRANCHES TO ANY PROCEDURE.

INVOKEO PROCEDURES:
I NL INE

DESCRIPTIVE NOTES:
MULTI-SERVICE REQUEST. BREAKS UP COMMANDS INTO ONES
WITH KEY WORDS OR ONES WITH POSITIONAL PARAMETERS.
POSITIONS THE FILE TO APPROPRIATE RECORD THEN
OUTPUTS THE BUFFER TO THE APPROPRIATE ROUTINES,

INVOKED PROCEDURES:
ABSO1UTE-PCSITIONt BAD..BLOCK-.SIZE9 BOAM,
CONVERT...INARY# OATk,.SET-.ERRORI GEL-FILE,
GET-RECORD# INDEXle ISAM, LEADING, LIBRARY..CRASht
LOOK-.AL-TAOLEt MASS, MOVE, MOV'BYTES9 OPERATOR,
PARSING# READ-FI&.E9 STRING# .UBSTRt SYSTEM,
TRAILING, ZAP

REFERENCED GLOtOALS:
COUNT, BUFFER# APAGE, AUSER_.NAMEt IMAGE, SUBIOTYP,
SSUOS* OC~t, DCb29 I.T09 AJOBv KOCOUNT, TIMER,

XPL IMPLEMENTATONi NOVEMBER 7v 1969 74

ADSET, ACURRENT

DESCRIPTIVE NOTES!
OUTPUTS TO THE jhIM , READER OF HASP. BLANK OUT
73-8C. IT WILL SCREW UP BASIC PROGRAMS BUT HECK IT

INVOKED PROCEDURES:
OPERATOR, ZAP, STRING

REFERENCED GLOBALS:
CONDCODE, HASP.USER, BUFFERt ABUFFER72

DESCRIPTIVE NOTES:
OUTPUTS TO THE INTERNAL READER OF HASP.

INVOKED PROCEDURES:
STRING

REFERENCED GLOBALS:
CONDCODE, PRINTUSER, BUFFER

DESCRIPTIVE NOTES:
OUTPUTS TU THE INTERNAL READER OF HASP.

INVOKED PROCEDURES:
STRING

REFERENCED GLOBALS:

CONOCODE, PUNCHUSER9 BUFFER

DESCRIPTIVE NOTES:
OUTPUTS TO THE TERMINAL.

INVOKED PROCEDURES:
MOVE, OPERATOR

REFERENCED GLOBALS:
APAGE, BUFFER

LIRRARY INSERT

CRIPTIVE NOTES:
INSERTS A CARD IMAGE INTO A USERIS DATA SET.
HANDLES TRACK OVERFLOW BY WRITING THE LAST 15 CARDS
ONTO A NEW TRACK.

INVOKED PROCEDURES:

XPL IMPLEMENTATION, NOVEMBER 79 1969 75

BADLOCKSIZEt BCAM# CREATELABEL-BLOCK,
DATASETERRORt GETFILE, GETTRK9 ISAM, NAP, MOVE,
OPERATOR, READFILEt RELATIVEPOSITION, WRITE-FIE

REFERENCED GLOBALS:
CURRENT, LO, fBLKS, #TEXT# #SUBS# APAGE, ABUFFER,
APADDING, LTI, DCB1t HI, ABUFF, AFREE_kMAGEt
BADBLOCKSIZE9 BOAMr BYTE, COREBYTE

DESCRIPTIVE NOTES:
ALLOWS FREE FORM FOR INSERTION, THE SCAN LOOKS FOR
THE FIRST NON-BLANK SEQUENCE OF CHARACTERS WITHIN
COLUMNS I TO 8. THE FIRST BLANK AFTER THE NON-BLANK
STRING TERMINATES THAT STRING* IT BECOMES THE KEY.
THE NEXT 72 CHARACTERS AFTER THAT BLANK BECOMES THE
TEXT.

INVOKED PROCEDURES:
COREBYTE, LEADING, MOVE, MOVEBYTESo OPERATOR,
STRING

REFERENCED GLOBALS:
ABUFFER, CONDCODE9 APAGE, CURRENT

RS LIBRARY INSERT

DESCRIPTIVE NOTES:
DETERMINES IF STANDARD COMMAND MODE OR KEYLESS
MODE. IF IT IS KEYLESS MODE THEN DECIDE TO EITHER
AUTOMATICALLY GENERATE THE KEYS OR USE THE
FREESCAN..INSERT TECHNIQUE (OPTION 1BASIC'). THE
SENTINEL STRING TERMINATES THE KEYLESS MODE.

INVOKED PROCEDURES:
BAO-8LOCKSIZEt BYTE, CONVERTBINARY# COREBYTEt
DATASETERRORt FREESCANIiNSERTI LEADING,
LIBRARYCRASH, LIBRARY-INSERTt MOVE, OPERATOR,
PARSING@STRINGv SUBSTRt TRAILING

REFERENCED GLOBALS:
SUBIOTYPt BUFFER, COUNT, COUNT2t STOPKEY9 CURRENT

FLEILL

DESCRIPTIVE NOTES:
DELETES CARDS SUSX TO SUBY. IF THE LAST CARD
DELETED WAS THE HI KEY THEN WE MUST FIX I1rE DSNODE,
THE BLOCK 3 POINTER AND THE DIRECTORY POINTERS. IT
IS AN INTERNAL PROCEDURE USING INTERNAL GLOBALS
ISUBX, SUBYt AND SUBS)o

INVOKED PROCEDURES:
BDAMt GETFILEt ISAMt MOVEBYTES, STRING, WRITE-FILE

XPL IMPLEENTAT:ON9 NOVEMBER 7s 1969 76

REFERENCED GLOBALS:
BUFFER# Hit LT09 OCBlv PAGE

IRACK UNnERFLEV

DESCRIPTIVE NOTES:
EITHER THERE ARE NO CARDS IN THE TRACK OR THERE IS
ONLY ONE LEFT. FOR CASE It THROW THE TRACK AWAY AND
REMOVE IT FROM THE DIRECTORY. FOR CASE 2, SAVE THE
LAST CARD, THRCW THE TRACK AWAY, AND PUT THE LAST

CARD BACK IN (INSERT WILL AFFECT TRACKS AFTER THE
ONE WE HAVE THROWN AWAY).

LIBRARy DELETE

DESCRIPTIVE NOTES:
MULTI-SERVICE REQUEST.

DELETES A CARD IMAGE FROM THE USER'S DATA SET.
THERE ARE 3 POSSIBLE CASES. THEY ARE THAT THE START
AND STOP KEYS ARE: ON THE SAME TRACK, 2) ON
ADJACENT TRACKS, OR 3) SEPARATED BY I OR MORE
TRACKS. THE ALGORITHM IS TO TAKE CASE 3, REDUCE IT
TO CASE 2o TAKE CASE 2 AND REDUCE IT TO CASE 1. IN
THIS MANNER THE NUMBER OF DISK READ/WAITES IS

MINIMIZED. THE FIRST IMPLEMENTATION DELETED A CARD
AT A TIME. THIS IS CLEARLY SIMPLE BUT GROSSLY

INEFFICIENT.

INVOKED PROCEDURES:
BADBLOCK.SIZE BOAM, DATASETERROR DELETE-LOOP,
GETFIlEt [SAM, LEA0ING, LIBRARYCRASH#
LIBRARVINSERT, MOVE, OPERATORP PARSING,
REINITIALIZE, STRING, TRACKUNDERFLOWt WRITE-FILE

REFERENCED GLOBALS:
LTf, DCBIe OCS2, COUNT, APAGE, BUFFER, IMAGE,
SUB!OTYP

LIRRARY Llh

DESCRIPTIVE NOTES:
SELECTS AN XPL LOAOABLE DATA SET AND AUGMENTS THE
CONTROL RECORD WITH THE NUMBER OF LOGICAL TRACKS IN
THE DATA SET. THE CONTROL RECORD IS PASSED IN THE
BUFFER.

INVOKED PROCEDURES:
BUAM, GETFILE, LIBRARYSELECT, MOVE, POST, WAIT

REFERENCED GLOBALS2
CONOCODEt DCSI, OCB2, LTfs OSUBS, ASUSS9 PAGE.bUFR

IWWfiARYL

XPL IMPLEMENTATION, NOVEMBER 7, 1969 77

DESCRIPTIVE NOTES:
READS IN A LOGICAL TRACK AND TRANSFERS THE BLOCK 4
DATA TO THE AREA POINTED BY AREALOC. THE SUB-BLOCK#
IS CONTAINED IN THE COMMAND.

INVOKED PROCEDURES:
BOAM, CCNVERTBINARY, DATA-SETERROR, GETFILE,
GETINTOPROTECT.KEY-ZERO,
GETOUT-CFPROTECT-KEYZEROP LI8RARYCRASH, MOVE,
PARSING

REFERENCED GLOBALS:
BUFFER, DCBL. LTe, 8SUBS, ABLK, *TEXT, ,SUBS,
AREALOC, PAGE

DESCRIPTIVE NOTES:
WRITES A LOGICAL TRACK GIVEN THE KEY IN THE CCMMAND
AND TO THE AREA POINTED BY A

IF THE KEY EXISTS, REPLACE IT WITH THE NEW IMAGE.
OTHERWISE FIX THE DIRECTORY AND WRITE THE NEW
IMAGE.

INVOKED PROCEDURES:
BDAM, CRATE..LASBEL_BLOCK* DATASETERROR, GETFILEp
GETTRK, ISAM@ LEADING, LIBRARYCRASH, MAP, MOVE,
PARSING, SYSTEM, WRI.TEFILE

REFERENCED GLOBALS:
BUFFER, CURRENT, DC8I9 OCB2P CONDCODE, FREEIMAGEt
BUFF, AREALOC, PAGE# L119 ABLK

DESCRIPTIVE NOTES:
CHANGES THE DATA SET NAME IN THE DIRECTORY PAGE TO
THE NEW NAME, BUT NOT THE INDIVIDUAL TRACKS, LOCK
IN PAGE DATA SET TO -1.

INVOKED PROCEDURES:
INPUTERe LOOKATTA6%.Et LOOKATPAGEt PARSING,
OPERATOR, OAM, MOVE, WRITEFILE

REFERENCED GLOSALS:
CONDCOOE, COUNT, ADSET, PADDING

PRF LIRRARy HASP

DESCRIPTIVE NOTES:
PROVIDES A SINGLE SERVER FOR HASP RECUESTS. THE
li*EOF ° IS A HASP INTERVAL READER CONVENTICN. MORE
THAN ONE 4/eEOF' CARDS ARE USED TO FLUSH THE QSAM
BUFFER.

XPL IMF..EMENTATION, NOVEMBER 79 1969 78

IN1.OKED PROCEDURES:
LIBRARYHASP, MOVE, OPERATOR, OUTPUTER, ZAP

REFERENCED GLOBALS:
PUTQUEUEv HASPUSER, TERMAD, COUNT, CONDCODEt

BUFFER

PRE LIBRARY PR.Nj

DESCRIPTIVE NOTES:
USE THE SINGLE SERVER QUEUE TECHNIQUE BY EXAMINING

@PUTQUEUEI. IF IT IS BUSY, THEN PASS OVER THE

REQUEST. NOTE THAT INITIALLY PRINT, PUNCH, AND HASP

SHARE THE QUEUE (SINCE INTERNAL READER CAN BE

ALLOCATED TO ONLY 3NE 00 CARD). PRINT JOB BY

GENERATING JCL CARDS. LET THE DEFAULTS BE UH

DEFAULTS. NOTE THAT MORE THAN ONE @/SEOF$ CARDS ARE

PASSED TO FLUSH THE QSAM BUFFERS.

INVOKED PROCEDURES:
LIBRARYPRINTv MOVEBYTESt MOVER, OPERATOR,

OUTPUTER, ZAP

REFERENCED GLOBALS:
PUTQUEUE, PRINT-USER9 TERMACt COUNT, CONOCODE,

BUFFER

jRE LIBRARY PUNCH

DESCRIPTIVE NOTES:
USE THE SINGLE SERVER QUEUE TECHNIQUE BY EXAMINING

*PUT-QUEUkl. IF IT IS BUSY, THEN PASS OVER THE

REQUEST. NOTE THAT INITIALLY PRINT, PUNCH, AND HASP

SHARE THE QUEUE (SINCE INTERNAL READER CAN BE

ALLOCATED TC ONLY ONE 00 CAROl. PUNCH JOB BY

GENERATING JCL CARDS. LET THE DEFAULTS BE UN

DEFAULTS. NOTE THAT MORE THAN ONE */*EOF6 CARDS ARE

PASSED TO FLUSH THE QSAM BUFFERS.

INVOKED PROCEDURES:
LISRARYPUI H, NOVESYTES, MOVER, OPERATOR,

OUTPUTER9 ZAP

REFERENCED GLOBALSI
PUT-QUEUE* PUICH.USER, TERMAC, COUNT, CONDCOOE,

BUFFER

DESCRIPTIVE NOTES:

IWTIALIZES THE SYSTEM, DETERMINES THE COMMANDS*

HANDLES THE REQUEST QUEUES. (THREAD THROUGH QUEUE.

WHE'i THE LAST ONE IS REACHED# START AGAIN* IF THERE

ARt NO MORE, WAIT FOR SOME WORK). MATCH OUT FOR

CC MANT TERMINALS.

XPL IMPLEMENTATION, NOVE64BER 7g 1969 79

INVOKLD PROLEOURE5:
ALLOCATE-JSNODE, FREE...SNODEt INITIALIZE-..SNOOE,
L[BRARY..CREATEP LIBRARY-04JOLs LIBRARY..OELETEV
LIBRARY_..ISPLAY, LIBRARY.JiASP, L-2BRARY-.IJ4SERT,
LIBRARY-..LINKt LIBRARY-.LOAO, LIRAIYNAMEt
LIBRARY_..SCRAT:H, LIBRARY..SELECT, LOGGING, MOVE,
OPERATOR, OUTPUTER, POST, PRE-LIBRARY-HASP,
PRE-LIBRARY-INSERT, PRE.LIBRARYPRINTt
PRE-LIBRARY..PUNCht STRING, SUBSTR, SYSTEM, WAIT,
ZA P

REUFERENCEO GLOBALS:
COUNT, SUBIOTYP, STATUS, IOCOUNTv CONTINLING,
CONOCODE, BUFFER, JOB, NAME, LI8TYPEP 1OSTAT,
QUEUEl, PCINTER

FILE MAINTENANCE ROUTINES', NOVEMBER 7w 1969 80

THE FILE MAINrENANCE ROUTINES CREATE THE LIkRARY FIL,

EXTRACTS DISK USAGE DATA FOR THE SYSTEM MANAGER, AND
REORGANIZES THE MEMBERS WITHIN THE FILE. THESE PROGRAMS
MAIhTAIN THE DATA BASE AS AN IBM DIRECT ACCESS DATA SET.

ZERUDISK INITIALIZES A DIRECT-ACCESS DATA SET WITH THE
PROPERLY FORMATTED LOGICAL TRACKS. IT IS WRITTEN IN FORTRAN
IV AND USES AN ASSEMBLY LANGUAGE PROGRAM, WRITEG. WRITEQ IS
REQUIRED TO INITIALIZE A BOAM DATA SET WITHOUT KEYS.

ZEROOISK HAS TWO PARTS, k'E PART READS THE DATA CARDS,
FORMATTING THE PROPER TYPE OF LOGICAL TRACK, AND THE OTHER
PART WRITES THE FORMATTED TRACKS ONTO DISK. THE INPUT IS
DIVIDED INTO 3 PARTS, ONE SECTION FOR THE DIRECTORY TABLE OF
CONTENTS, THE NEXT SECTION FOR THE DIRECTORY PAGES AND THE
LAST SECTION FOR FREE LOGICAL TRAC .

EACH SECTION HAS THE SAK STPJCTURE, FOUR BLUCKS PER
SECTION. FOR EACH BLOCK THERE IS A FORMAT CARD AND THE
APPROPRIATE DATA CARDS FOR THAT BLOCK* THE DESCRIPTION OF
EACH BLOCK IS GIVEN IN OS IMPLEMENTA:ION SECTION.

AFTER ALL THE INPUT CARDS HAVE BEEN READ, AND IF THERE
ARE NO ERRORS, THEN THE TRACKS ARE WRITTEN IN THE FOLLOWING
MANNER: THE FIRST HALF OF THE DATA SET IS WRITTEN, THEN THE
DIRECTORY PPGES9 AND FINALLY THE LAST HALF O c THE DATA SET.
EACH CYLINDER HAS THE APPROPRIATE LOGICAL TRACKS WITH THE
OTOC LOGICAL TRACK ON THE FIRST RECORD OF THE NINETEENTH
HEAD.

FOR EACH TYPE OF LOGICAL TRACK, A LISTING OF THE FORMAT
CARDS AND THE CORRESPONDING DATA CARDS IS PROVIDED. THE DATA
IS IN HEXADECIMAf. AS THEY WOULD APPEAR ON THE DISK. FINALLY,
THE FIRSI ICO WORDS Or THE RECORD ARE DUMPED TO VERIFY THAT
THE FORMATIM4G IS PROPER.

FILE MAINTENANCE ROUTINES, NOVEMBER 7, 1969 81

STATLL,

STATOISK EXAMINES EACH LOGICAL TRACK IN THE UHTSS/2
LIBRARY DATA SET ANQ PRINTS INFORMATION PERTINENT TO THAT
TRACK. THIS PROGRAM, WRITTEN IN FORTRANt IS INTENDED ONLY
FOR THE SYSTEM MANAGERS SINCE IT VIOLATES THE SECURITY LOCKS
WITHIN THE SYSTEM.

EACH LOGICAL TRACK IS READ AND CLASSIFIED. DEPENDING
UPON ITS CLASSIFICATION# THE APPROPRIATE INFORMATION IS
PUINTED. THE MOST IMPORTANT INFORMATION IS THE LOGICAL TRACK
POINTERS IN THE DIRECTORIES. ONLY THE CURRENT OTOC IS
LISTED. FINALLY SOME STATISTICS REGARDING THE DISK
UTILIZATION ARE LISTED. NO1E THAT LOCK IS AT THE MOMENT JUST
THE LTS OF SOME LOGICAL TRACK (USUALLY ITSELF EXCEPT IN THE
CASE OF DTOCS).

WHILE THE POSTING FORMAT IS QUITE OBVIOUS, ONE PART OF
THE LISTING MUST BE CLARIFIED: THE FORMAT OF A BLOCK 3 MAP
(AND BLOCK 4) IS THE NUMBER OF SUBBLOCKSt THE NUMBER OF
WORDS IN THE DATA AREA, THE NUMBER OF WORDS IN THE KEY AREA,
A"O THE NUMBER OF WORDS IN THE LOCK AREA.

NOTE THAT THE PERCENTAGE OF TRACKS USED MAY BE THE SAME
AS THE SUM OF THE PERCENTAGES FOR PAGE, OTOC, USER LOGICAL
TRACKS (FOR THE MOMENT THE ONLY REASON IS THAT INITIALLY
SOME TRACKS WERE ALLOCATED FOR FUTURE USE. FOR THE 101
CYLINDER FILE, 2 CYLINDERS WERE SAVED FOR PAGE OVERFLOW
TRACKS).

FILE MAINTENANCE ROUTINES, IOVEMBER 7, 1969 82

THE PURPOSE OF ANLZDISK IS TC PROVIDE A SYSTEMS
MANAGEMENT TOOL WHICH MAY BE USED TO EXTRACT UTILIZATION
INFORMATION CONTAINED WITHIN THE LIBRARY FILE. THE INPUT IS
A SET OF DATA CARDS SPECIFYING WHETHER A GIVEN DATA SET
SHOULD BE SAVED OR SCRATCHED. THE OUTPUT IS A LIST OF DATA
SETS WHICH WILL EXPIRE WITHIN A WEEK FROM THE DATE THE
PROGRAM WAS RUNt A LIST OF DATA SETS WHICH HAVE BEEN
SCRATCHED, AND TRACiX UTILIZATION FACTS FOR EACH DATA SET.
THE TRACK UTILIZATION FACTS CONTAIN THE USE COUNT OF EACH

LOGICAL TRACK AND THE NUMBER OF BYTES USED IN THAT TRACK.

THt PROGRAM IS SO STRUCTURED AS TO ENABLE THE UHTSS
MANAGER TO EXTRACT ANY INFORMATION CONTAINED ON THE LIBRARY
FILE. WHILE AT THE PRESENT TIME THE PROGRAM ALLOWS MAINLY
FOR AUTOMATIC CHECKING AND SCRATCHING OF DATA SETS, IT CANBE
EEASILY MODIFIED TO EXTRACT SPECIFIC INFORMATION THE SYSTEM
MANAGER MAY REQUEST.

THE UTILITY PROGRAM WILL PROVIDE A LIST OF DATA SETS
WHICH WILL EXPIRE WITHIN A WEEK FROM THE DATE THE PRORAM IS
RUN (USING CHECKDATEI. UNLESS AN EXTENSION OF THE
EXPIRATION DATE IS REQUESTED BY THE USER, THE DATA SET WILL
THEN BE AUTOMATICALLY SCRATCHED THE NEXT TIME THE ANLZDISK
PROGRAM IS RUN (A TWO WEEK GRACE PERIOD IS PROVIDED HOWEVER,
BEFORE ACTUALLY SCRATCHING THE DATA SET). AN OVERRIDE
FEATURE IS PROVIDED. THIS FEATURE IS A SCRATCH/SAVE LIST
WHICH IS A SET OF DATA CARDS HAVING THE DATA SET NAME IN
COLUMN ONE, THE JOB/ACCOUNT NUMBER IN COLUMN TEN, AND THE
SCRATCH/SAVE CODE IN COLUMN TWENTY (SCRATCH-I AND SAVE=

IN ADDITION TO THE ABOVE FUNCTIONS, THE PROGRAM ALSO
PRINTS EACH DATA SET NAME@ JOB/ACCOUNT NUMBER, PROGRAMMER'S
NAME AND THE ASSOCIATED PAGE WITH THE PRIMARY AND SECONDARY
LOGICAL TRACK NUMBERS, AS WELL AS THE NUMBER OF TIMES THE
SECONDARY LOGICAL TRACK HAS BEEN USED AND ks3W MANY BYTES IT
CONTAINS.

THE FUNCTION OF JQI.L IS TO PROVIDE A MESSAGE
DIRECTORY OF THE SYSTEM. TWO PARAMETERS ARE PASSED, THE

FIRST BEING A VARIABLE AND THE SECOND AN ERROR CODE. TEN
BASIC CODES ARE PROVIDED DIFFERING BY THE POSITION OF THE
VARIABLE WITHIN THE MESSAGE AND THE SEVERITY LEVEL (BLANK
Ii, NOTE (3)v WARNING 13), SEVERE ERROR (31).

THE FUNCTION OF .UL.B41La..IT IS TO ERASE A SPECIFIED DATA
SET AND TO PROVIDE A MESSAGE TO THAT EFFECT. THE PARAMETER
IS THE DATA SET NAME.

83

AL~kNLEDGEMENTS

THE AUTHOR WISHES TO THANK THE IBM CORPORATION FOR
MAKING IT FEASIBLE FOR TiE ALOHA PROJECT TO UNDERTAKE THE
DEVELOPMENT OF A TIME-SHARING SYSTEM.

MY DEEPEST APPRECIATION GOES TO DR. W. W. PETERSON, DR.
N. ABRAMSONq AND DR. F. KUG WHO PROVIDE THE ATMOSHPERE AND
ENCOURAGEMENT REQUIRED IN ORDER TO PERSEVERE IN SUCH AN
ARDUOUS ENVIRONMENT.

I WOULD LIKE TO THANK ALICIA NAKAMOTO FOR HER FORTITUDE
AND EXCELLENT CRYPTOGRAPHIC ABILITY AND WILHEM BORTELS FOR
HIS WORK ON ANLZOISK.

FINALLY I WISH TO NOTE THAT THIS PROJECT MAY SUCCEED IN
SPITE OF THE COMPUTING CENTER.

DOCUMENT CONTrOL DATi, - R & D
See,. e, ,,.i~, oo.t FIle. h..dv '61 Ahxor.i,~ o nd smcexin, oonnolninn *'.Ihe entered whn thea oeprall to-port Is r~xfifAUe

p p,-I..y A TING~ AC I IfT V .r ra roetulhor) 24. RE 10 T 3ECUU C 1111'1r ,A -ilF IC A TION

THE11 ALOI [A SYSTE.1 UNCLASSIFILD
Univeorsity of Ikiwaii *b.GRU

Honolulu, Hawaii 96822 __________

UIITSS LIBRARY MANAGEMENT YESTEiRDAY, TODAY, AND TOMORROW

4 liro-onvt "OTC(7v-p@ of report and Inclunivedaleaj

Scientific Interim
S. AU ?P-.0iso (Fowi namrre, middle itorIla, laf e mo)

Alan C.H. Kam

19 70 --- T 1 11
De. CCN P4AC. Ton ORAN NO.4g. COtGNAION'S REPORT NUM11191111111

F44620-69-C-0030 TR B . 0-5
h. rROJC T O..

97492 Off. OTHLR REPORT NoCSP (Any olhernumbereat ins ma -a osellgiad

I. 681304 x~O R 7 2~
10, 01111"IUP ~T10', ,T AE NI

1. This document has been approved for public
rc-iea:;r and sale; its distribution is' unlimited..

Air Force Office cf-Scicntific Re~searchT,
TECH, OTHER 1403 Wilson Boulevard. (SRMA)

Arlington, Virginia 22209-
03. APS"PACI

'This report is a collection of internal reports dealing withi
the library management. The preliminary design details the anticipated
system. The structure of data base reveals the implementationschemne
on an IBM 2314 disk facility. Various algorithms'are presented-to
document the actual system conditioned by using' XPL and OS/MVT/HASP..
Finally a detailed description of the XPL program elaborates upon the
modular approach.,

DU No'1473 *__________

